This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309513 #27 Jun 18 2025 07:32:26 %S A309513 0,0,0,0,1,2,5,4,7,8,12,12,18,18,24,24,31,32,41,40,49,50,60,60,72,72, %T A309513 84,84,97,98,113,112,127,128,144,144,162,162,180,180,199,200,221,220, %U A309513 241,242,264,264,288,288,312,312,337,338,365,364,391,392,420,420 %N A309513 Number of even parts in the partitions of n into 3 parts. %H A309513 Ray Chandler, <a href="/A309513/b309513.txt">Table of n, a(n) for n = 0..1000</a> %H A309513 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %H A309513 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1,1,-1,0,0,-1,1). %F A309513 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (((i-1) mod 2) + ((j-1) mod 2) + ((n-i-j-1) mod 2)). [Corrected by _Georg Fischer_, Mar 11 2025] %F A309513 From _Colin Barker_, Aug 06 2019: (Start) %F A309513 G.f.: x^4*(1 + x + 3*x^2 - x^3 + 2*x^4) / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)). %F A309513 a(n) = a(n-1) + a(n-4) - a(n-5) + a(n-6) - a(n-7) - a(n-10) + a(n-11) for n>10. (End) %F A309513 a(n) = 3*A069905(n) - A309511(n). - _Ray Chandler_, Mar 13 2025 %e A309513 Figure 1: The partitions of n into 3 parts for n = 3, 4, ... %e A309513 1+1+8 %e A309513 1+1+7 1+2+7 %e A309513 1+2+6 1+3+6 %e A309513 1+1+6 1+3+5 1+4+5 %e A309513 1+1+5 1+2+5 1+4+4 2+2+6 %e A309513 1+1+4 1+2+4 1+3+4 2+2+5 2+3+5 %e A309513 1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4 %e A309513 1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ... %e A309513 ----------------------------------------------------------------------- %e A309513 n | 3 4 5 6 7 8 9 10 ... %e A309513 ----------------------------------------------------------------------- %e A309513 a(n) | 0 1 2 5 4 7 8 12 ... %e A309513 ----------------------------------------------------------------------- %t A309513 Table[Sum[Sum[Mod[i - 1, 2] + Mod[j - 1, 2] + Mod[n - i - j - 1, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}] %Y A309513 Cf. A069905, A128012, A309511. %K A309513 nonn,easy %O A309513 0,6 %A A309513 _Wesley Ivan Hurt_, Aug 05 2019