cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309516 Number of odd parts in the partitions of n into 4 parts.

This page as a plain text file.
%I A309516 #17 Dec 30 2024 22:48:13
%S A309516 0,0,0,0,4,3,6,7,12,14,22,25,36,40,52,59,76,85,104,116,140,154,182,
%T A309516 200,232,254,290,316,360,389,436,471,524,564,624,669,736,786,858,915,
%U A309516 996,1059,1146,1216,1312,1388,1492,1576,1688,1780,1900,2000,2132,2239
%N A309516 Number of odd parts in the partitions of n into 4 parts.
%H A309516 Harvey P. Dale, <a href="/A309516/b309516.txt">Table of n, a(n) for n = 0..1000</a>
%H A309516 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%F A309516 a(n) = Sum_{k=1..floor(n/4)} Sum_{j=k..floor((n-k)/3)} Sum_{i=j..floor((n-j-k)/2)} ((i mod 2) + (j mod 2) + (k mod 2) + ((n-i-j-k) mod 2)).
%F A309516 Conjectures from _Colin Barker_, Aug 06 2019: (Start)
%F A309516 G.f.: x^4*(4 - 5*x + 4*x^2 - 2*x^3 + 4*x^4 - 3*x^5 + 2*x^6) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)*(1 + x^4)).
%F A309516 a(n) = 2*a(n-1) - a(n-2) + a(n-6) - 2*a(n-7) + 2*a(n-8) - 2*a(n-9) + a(n-10) - a(n-14) + 2*a(n-15) - a(n-16) for n>15.
%F A309516 (End)
%e A309516 Figure 1: The partitions of n into 4 parts for n = 8, 9, ..
%e A309516                                                          1+1+1+9
%e A309516                                                          1+1+2+8
%e A309516                                                          1+1+3+7
%e A309516                                                          1+1+4+6
%e A309516                                              1+1+1+8     1+1+5+5
%e A309516                                              1+1+2+7     1+2+2+7
%e A309516                                  1+1+1+7     1+1+3+6     1+2+3+6
%e A309516                                  1+1+2+6     1+1+4+5     1+2+4+5
%e A309516                                  1+1+3+5     1+2+2+6     1+3+3+5
%e A309516                      1+1+1+6     1+1+4+4     1+2+3+5     1+3+4+4
%e A309516          1+1+1+5     1+1+2+5     1+2+2+5     1+2+4+4     2+2+2+6
%e A309516          1+1+2+4     1+1+3+4     1+2+3+4     1+3+3+4     2+2+3+5
%e A309516          1+1+3+3     1+2+2+4     1+3+3+3     2+2+2+5     2+2+4+4
%e A309516          1+2+2+3     1+2+3+3     2+2+2+4     2+2+3+4     2+3+3+4
%e A309516          2+2+2+2     2+2+2+3     2+2+3+3     2+3+3+3     3+3+3+3
%e A309516 --------------------------------------------------------------------------
%e A309516   n  |      8           9          10          11          12        ...
%e A309516 --------------------------------------------------------------------------
%e A309516 a(n) |     12          14          22          25          36        ...
%e A309516 --------------------------------------------------------------------------
%e A309516 - _Wesley Ivan Hurt_, Sep 07 2019
%t A309516 Table[Sum[Sum[Sum[(Mod[i, 2] + Mod[j, 2] + Mod[k, 2] + Mod[n - i - j - k, 2]), {i, j, Floor[(n - j - k)/2]}], {j, k, Floor[(n - k)/3]}], {k, Floor[n/4]}], {n, 0, 80}]
%t A309516 Table[Count[Flatten[IntegerPartitions[n,{4}]],_?OddQ],{n,0,60}] (* _Harvey P. Dale_, Dec 30 2024 *)
%K A309516 nonn
%O A309516 0,5
%A A309516 _Wesley Ivan Hurt_, Aug 05 2019