This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309523 #27 Dec 29 2024 20:25:24 %S A309523 1,7,8,2,16,4,5,17,10,34,35,11,70,22,23,71,46,142,143,47,286,94,95, %T A309523 287,190,574,575,191,1150,382,383,1151,766,2302,2303,767,4606,1534, %U A309523 1535,4607,3070,9214,9215,3071,18430,6142,6143,18431,12286,36862 %N A309523 Start with a(1) = 1 and apply certain patterns of operations on a(n-1) to obtain a(n) as described in comments. %C A309523 a(2) = 7 is obtained from a(1) = 1 by (((1) +1) *3) +1. We abbreviate this to the operation pattern "+1 *3 +1". The 8 patterns for a(3..10), a(11..18) etc. are: %C A309523 +1 %C A309523 +1 /3 -1 %C A309523 +1 *3 *2 -2 %C A309523 -1 /3 -1 %C A309523 +1 %C A309523 +1 *3 -1 %C A309523 +1 /3 *2 -2 %C A309523 +1 *3 +1 %C A309523 A308709 uses similar, but simpler patterns in blocks of 4 (cf. the example, below). A308709 contains the set {2^k | k>=0} union {3*2^k | k>=0}, so all terms are different. This sequence contains the terms {6*A308709 - 2} union {6*A308709 - 1}, therefore all terms are also different. %H A309523 Colin Barker, <a href="/A309523/b309523.txt">Table of n, a(n) for n = 1..1000</a> %H A309523 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,0,0,0,0,4,-4,4,-4). %F A309523 From _Colin Barker_, Aug 06 2019: (Start) %F A309523 G.f.: x*(1 + 6*x + 2*x^2 + 15*x^4 - 18*x^5 + 15*x^6 - 10*x^8 + 12*x^9 - 14*x^10) / ((1 - x)*(1 + x^2)*(1 - 2*x^4)*(1 + 2*x^4)). %F A309523 a(n) = a(n-1) - a(n-2) + a(n-3) + 4*a(n-8) - 4*a(n-9) + 4*a(n-10) - 4*a(n-11) for n>11. %F A309523 (End) %e A309523 A308709 | this sequence %e A309523 | 1 %e A309523 | 7 +1 *3 +1 %e A309523 | 8 +1 %e A309523 | 2 +1 /3 -1 %e A309523 3 | 16 +1 *3 *2 -2 %e A309523 1 /3 | 4 -1 /3 -1 %e A309523 | 5 +1 %e A309523 | 17 +1 *3 -1 %e A309523 2 *2 | 10 +1 /3 *2 -2 %e A309523 6 *3 | 34 +1 *3 +1 %e A309523 | 35 +1 %e A309523 | 11 +1 /3 -1 %e A309523 12 *2 | 70 +1 *3 *2 -2 %e A309523 4 /3 | 22 -1 /3 -1 %e A309523 | 23 +1 %e A309523 | 71 +1 *3 -1 %e A309523 8 *2 | 46 +1 /3 *2 -2 %e A309523 24 *3 | 142 +1 *3 +1 %e A309523 | 143 +1 %t A309523 LinearRecurrence[{1, -1, 1, 0, 0, 0, 0, 4, -4, 4, -4},{1, 7, 8, 2, 16, 4, 5, 17, 10, 34, 35}, 50] %o A309523 (PARI) Vec(x*(1 + 6*x + 2*x^2 + 15*x^4 - 18*x^5 + 15*x^6 - 10*x^8 + 12*x^9 - 14*x^10) / ((1 - x)*(1 + x^2)*(1 - 2*x^4)*(1 + 2*x^4)) + O(x^40)) \\ _Colin Barker_, Aug 06 2019 %o A309523 (Perl) use integer; %o A309523 my @a; my $n = 1; $a[$n ++] = 1; %o A309523 $a[$n ++] = (($a[$n-1] +1) *3) +1; # 7 %o A309523 while ($n < 50) { %o A309523 $a[$n ++] = (($a[$n-1] +1) ); # 8 %o A309523 $a[$n ++] = (($a[$n-1] +1) /3) -1; # 2 %o A309523 $a[$n ++] = (($a[$n-1] +1) *3) *2 -2; # 16 %o A309523 $a[$n ++] = (($a[$n-1] -1) /3) -1; # 4 %o A309523 $a[$n ++] = (($a[$n-1] +1) ); # 5 %o A309523 $a[$n ++] = (($a[$n-1] +1) *3) -1; # 17 %o A309523 $a[$n ++] = (($a[$n-1] +1) /3) *2 -2; # 10 %o A309523 $a[$n ++] = (($a[$n-1] +1) *3) +1; # 34 %o A309523 } # while %o A309523 shift(@a); # remove $a[0] %o A309523 print join(", ", @a) . "\n"; # _Georg Fischer_, Aug 07 2019 %o A309523 (Python) %o A309523 def A309523(): %o A309523 k, j, a = 0, 0, 1 %o A309523 def b(a): return a + 1 %o A309523 def c(a): return a + 2 %o A309523 def d(a): return a - 1 %o A309523 def e(a): return a - 2 %o A309523 def f(a): return a << 1 %o A309523 def g(a): return a * 3 %o A309523 def h(a): return a // 3 %o A309523 O = [c,g,e,b,b,h,d,b,g,f,e,c,h,e,b,b,g,d,b,h,f,e] %o A309523 L = [3,1,3,4] %o A309523 while True: %o A309523 yield(a) %o A309523 for _ in range(L[j]): %o A309523 a = O[k](a) %o A309523 k += 1; k %= 22 %o A309523 j += 1; j %= 4 %o A309523 a = A309523() %o A309523 print([next(a) for _ in range(50)]) # _Peter Luschny_, Aug 06 2019 %Y A309523 Cf. A308709. %K A309523 nonn,easy %O A309523 1,2 %A A309523 _Georg Fischer_, Aug 06 2019