cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309523 Start with a(1) = 1 and apply certain patterns of operations on a(n-1) to obtain a(n) as described in comments.

This page as a plain text file.
%I A309523 #27 Dec 29 2024 20:25:24
%S A309523 1,7,8,2,16,4,5,17,10,34,35,11,70,22,23,71,46,142,143,47,286,94,95,
%T A309523 287,190,574,575,191,1150,382,383,1151,766,2302,2303,767,4606,1534,
%U A309523 1535,4607,3070,9214,9215,3071,18430,6142,6143,18431,12286,36862
%N A309523 Start with a(1) = 1 and apply certain patterns of operations on a(n-1) to obtain a(n) as described in comments.
%C A309523 a(2) = 7 is obtained from a(1) = 1 by (((1) +1) *3) +1. We abbreviate this to the operation pattern "+1 *3 +1". The 8 patterns for a(3..10), a(11..18) etc. are:
%C A309523   +1
%C A309523   +1 /3 -1
%C A309523   +1 *3 *2 -2
%C A309523   -1 /3 -1
%C A309523   +1
%C A309523   +1 *3 -1
%C A309523   +1 /3 *2 -2
%C A309523   +1 *3 +1
%C A309523 A308709 uses similar, but simpler patterns in blocks of 4 (cf. the example, below). A308709 contains the set {2^k | k>=0} union {3*2^k | k>=0}, so all terms are different. This sequence contains the terms {6*A308709 - 2} union {6*A308709 - 1}, therefore all terms are also different.
%H A309523 Colin Barker, <a href="/A309523/b309523.txt">Table of n, a(n) for n = 1..1000</a>
%H A309523 <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,0,0,0,0,4,-4,4,-4).
%F A309523 From _Colin Barker_, Aug 06 2019: (Start)
%F A309523 G.f.: x*(1 + 6*x + 2*x^2 + 15*x^4 - 18*x^5 + 15*x^6 - 10*x^8 + 12*x^9 - 14*x^10) / ((1 - x)*(1 + x^2)*(1 - 2*x^4)*(1 + 2*x^4)).
%F A309523 a(n) = a(n-1) - a(n-2) + a(n-3) + 4*a(n-8) - 4*a(n-9) + 4*a(n-10) - 4*a(n-11) for n>11.
%F A309523 (End)
%e A309523   A308709 | this sequence
%e A309523           |   1
%e A309523           |   7    +1 *3 +1
%e A309523           |   8    +1
%e A309523           |   2    +1 /3 -1
%e A309523    3      |  16    +1 *3 *2 -2
%e A309523    1   /3 |   4    -1 /3 -1
%e A309523           |   5    +1
%e A309523           |  17    +1 *3 -1
%e A309523    2   *2 |  10    +1 /3 *2 -2
%e A309523    6   *3 |  34    +1 *3 +1
%e A309523           |  35    +1
%e A309523           |  11    +1 /3 -1
%e A309523   12   *2 |  70    +1 *3 *2 -2
%e A309523    4   /3 |  22    -1 /3 -1
%e A309523           |  23    +1
%e A309523           |  71    +1 *3 -1
%e A309523    8   *2 |  46    +1 /3 *2 -2
%e A309523   24   *3 | 142    +1 *3 +1
%e A309523           | 143    +1
%t A309523 LinearRecurrence[{1, -1, 1, 0, 0, 0, 0, 4, -4, 4, -4},{1, 7, 8, 2, 16, 4, 5, 17, 10, 34, 35}, 50]
%o A309523 (PARI) Vec(x*(1 + 6*x + 2*x^2 + 15*x^4 - 18*x^5 + 15*x^6 - 10*x^8 + 12*x^9 - 14*x^10) / ((1 - x)*(1 + x^2)*(1 - 2*x^4)*(1 + 2*x^4)) + O(x^40)) \\ _Colin Barker_, Aug 06 2019
%o A309523 (Perl) use integer;
%o A309523   my @a; my $n = 1; $a[$n ++] = 1;
%o A309523   $a[$n ++] =   (($a[$n-1] +1) *3) +1;    #  7
%o A309523   while ($n < 50) {
%o A309523     $a[$n ++] = (($a[$n-1] +1)   );       #  8
%o A309523     $a[$n ++] = (($a[$n-1] +1) /3) -1;    #  2
%o A309523     $a[$n ++] = (($a[$n-1] +1) *3) *2 -2; # 16
%o A309523     $a[$n ++] = (($a[$n-1] -1) /3) -1;    #  4
%o A309523     $a[$n ++] = (($a[$n-1] +1)   );       #  5
%o A309523     $a[$n ++] = (($a[$n-1] +1) *3) -1;    # 17
%o A309523     $a[$n ++] = (($a[$n-1] +1) /3) *2 -2; # 10
%o A309523     $a[$n ++] = (($a[$n-1] +1) *3) +1;    # 34
%o A309523   } # while
%o A309523   shift(@a); # remove $a[0]
%o A309523   print join(", ", @a) . "\n"; # _Georg Fischer_, Aug 07 2019
%o A309523 (Python)
%o A309523 def A309523():
%o A309523     k, j, a = 0, 0, 1
%o A309523     def b(a): return a + 1
%o A309523     def c(a): return a + 2
%o A309523     def d(a): return a - 1
%o A309523     def e(a): return a - 2
%o A309523     def f(a): return a << 1
%o A309523     def g(a): return a * 3
%o A309523     def h(a): return a // 3
%o A309523     O = [c,g,e,b,b,h,d,b,g,f,e,c,h,e,b,b,g,d,b,h,f,e]
%o A309523     L = [3,1,3,4]
%o A309523     while True:
%o A309523         yield(a)
%o A309523         for _ in range(L[j]):
%o A309523             a = O[k](a)
%o A309523             k += 1; k %= 22
%o A309523         j += 1; j %= 4
%o A309523 a = A309523()
%o A309523 print([next(a) for _ in range(50)]) # _Peter Luschny_, Aug 06 2019
%Y A309523 Cf. A308709.
%K A309523 nonn,easy
%O A309523 1,2
%A A309523 _Georg Fischer_, Aug 06 2019