cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309525 a(n) is the greatest divisor of A006190(n) that is coprime to A006190(m) for all positive integers m < n.

This page as a plain text file.
%I A309525 #13 Aug 02 2024 11:19:13
%S A309525 1,3,10,11,109,1,1189,119,1297,131,141481,59,1543321,1429,3089,14159,
%T A309525 183642229,433,2003229469,14041,1837837,170039,238367471761,7079,
%U A309525 23854956949,1854841,2186871697,1670761,309400794703549,12871,3375045015828949,200477279
%N A309525 a(n) is the greatest divisor of A006190(n) that is coprime to A006190(m) for all positive integers m < n.
%C A309525 Analog of A178763 and A308949.
%H A309525 Robert Israel, <a href="/A309525/b309525.txt">Table of n, a(n) for n = 1..1930</a>
%F A309525 a(n) = A253807(n) / gcd(A253807(n), n) if n != 6, 13.
%e A309525 A006190(12) = 467280 = 2^4 * 3^2 * 5 * 11 * 59. We have 2, 3, 5 divides A006190(6) = 360 and 11 divides A006190(3) = 11, but A006190(m) is coprime to 59 for all 1 <= m < 12, so a(12) = 59.
%p A309525 A6190:= proc(n) option remember; 3*procname(n-1)+procname(n-2) end proc:
%p A309525 A6190(0):= 0: A6190(1):= 1:
%p A309525 f:= proc(n) local k,i,g;
%p A309525   k:= A6190(n);
%p A309525   for i from 1 to n-1 do
%p A309525     g:= igcd(k,A6190(i));
%p A309525     while g > 1 do
%p A309525       k:= k/g;
%p A309525       g:= igcd(k,A6190(i));
%p A309525     od;
%p A309525   od;
%p A309525   k
%p A309525 end proc:
%p A309525 map(f, [$1..40]); # _Robert Israel_, Aug 02 2024
%o A309525 (PARI) T(n) = ([3, 1; 1, 0]^n)[2, 1]
%o A309525 b(n) = my(v=divisors(n)); prod(i=1, #v, T(v[i])^moebius(n/v[i]))
%o A309525 a(n) = if(isprime(n)&&!(13%n), 1543321, if(n!=6, b(n)/gcd(n, b(n)), 1))
%Y A309525 Cf. A006190, A253807.
%Y A309525 Cf. A178763, A308949, A309526.
%K A309525 nonn,look
%O A309525 1,2
%A A309525 _Jianing Song_, Aug 06 2019