cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309535 Total number of square parts in all compositions of n.

This page as a plain text file.
%I A309535 #28 Mar 17 2024 07:31:05
%S A309535 0,1,2,5,13,30,69,156,348,769,1682,3653,7884,16924,36160,76944,163137,
%T A309535 344770,726533,1527052,3202076,6700096,13992080,29167936,60703424,
%U A309535 126141953,261754114,542448645,1122778124,2321317916,4794159168,9891365008,20388823360
%N A309535 Total number of square parts in all compositions of n.
%H A309535 Alois P. Heinz, <a href="/A309535/b309535.txt">Table of n, a(n) for n = 0..3313</a>
%F A309535 G.f.: Sum_{k>=1} x^(k^2)*(1-x)^2/(1-2*x)^2.
%F A309535 a(n) ~ c * 2^n * n, where c = (EllipticTheta[3, 0, 1/2] - 1)/8 = 0.1411171034014846448336823185681189155765645674... - _Vaclav Kotesovec_, Aug 18 2019, updated Mar 17 2024
%F A309535 a(n) = Sum_{k=1..A000196(n)} A045623(n-k^2). - _Gregory L. Simay_, Jun 07 2021
%e A309535 a(4) = 13: (1)(1)(1)(1), (1)(1)2, (1)2(1), 2(1)(1), 22, (1)3, 3(1), (4).
%p A309535 a:= proc(n) option remember; add(a(n-j)+
%p A309535       `if`(issqr(j), ceil(2^(n-j-1)), 0), j=1..n)
%p A309535     end:
%p A309535 seq(a(n), n=0..33);
%t A309535 CoefficientList[Series[(EllipticTheta[3, 0, x]-1)*(1-x)^2/(2*(1-2*x)^2), {x, 0, 30}], x] (* _Vaclav Kotesovec_, Aug 18 2019 *)
%t A309535 Table[Sum[If[k == n, 1, (2^(n - k - 2)*(3 + n - k))] * If[IntegerQ[Sqrt[k]], 1, 0], {k, 1, n}], {n, 0, 30}] (* _Vaclav Kotesovec_, Aug 18 2019 *)
%Y A309535 Cf. A000196, A000290, A045623, A073336, A102291.
%K A309535 nonn
%O A309535 0,3
%A A309535 _Alois P. Heinz_, Aug 06 2019