cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309536 Total number of triangular numbers in all compositions of n.

This page as a plain text file.
%I A309536 #11 Aug 18 2019 07:11:08
%S A309536 0,1,2,6,14,33,77,174,389,860,1885,4098,8853,19020,40668,86593,183698,
%T A309536 388421,818892,1721884,3611968,7560337,15793474,32932549,68556300,
%U A309536 142495004,295754816,613039248,1269137729,2624393922,5421024773,11186523404,23061994524
%N A309536 Total number of triangular numbers in all compositions of n.
%H A309536 Alois P. Heinz, <a href="/A309536/b309536.txt">Table of n, a(n) for n = 0..3312</a>
%F A309536 G.f.: Sum_{k>=1} x^(k*(k+1)/2)*(1-x)^2/(1-2*x)^2.
%F A309536 a(n) ~ c * 2^n * n, where c = 0.1604081401637884665734606925563573585565153844... - _Vaclav Kotesovec_, Aug 18 2019
%e A309536 a(4) = 14: (1)(1)(1)(1), 2(1)(1), (1)2(1), (1)(1)2, 22, (3)(1), (1)(3), 4.
%p A309536 a:= proc(n) option remember; add(a(n-j)+
%p A309536       `if`(issqr(8*j+1), ceil(2^(n-j-1)), 0), j=1..n)
%p A309536     end:
%p A309536 seq(a(n), n=0..33);
%t A309536 CoefficientList[Series[(EllipticTheta[2, 0, Sqrt[x]]/(2*x^(1/8)) - 1)*((1 - x)^2/(1 - 2*x)^2), {x, 0, 30}], x] (* _Vaclav Kotesovec_, Aug 18 2019 *)
%Y A309536 Cf. A000217, A102291, A263235.
%K A309536 nonn
%O A309536 0,3
%A A309536 _Alois P. Heinz_, Aug 06 2019