cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309537 Total number of Fibonacci parts in all compositions of n.

This page as a plain text file.
%I A309537 #15 Mar 17 2024 08:05:30
%S A309537 0,1,3,8,19,46,106,241,541,1198,2629,5724,12380,26625,56978,121413,
%T A309537 257740,545308,1150272,2419856,5078336,10633921,22222338,46353669,
%U A309537 96525324,200686620,416645184,863834256,1788756288,3699688128,7643727360,15776156928,32529718272
%N A309537 Total number of Fibonacci parts in all compositions of n.
%H A309537 Alois P. Heinz, <a href="/A309537/b309537.txt">Table of n, a(n) for n = 0..3312</a>
%F A309537 G.f.: Sum_{k>=2} x^Fibonacci(k)*(1-x)^2/(1-2*x)^2.
%F A309537 a(n) ~ c * 2^n * n, where c = 0.22756969930196647294851075611776578612085598114... - _Vaclav Kotesovec_, Aug 18 2019
%F A309537 c = A124091/4 - 3/8. - _Vaclav Kotesovec_, Mar 17 2024
%p A309537 a:= proc(n) option remember; add(a(n-j)+`if`((t->issqr(t+4)
%p A309537       or issqr(t-4))(5*j^2), ceil(2^(n-j-1)), 0), j=1..n)
%p A309537     end:
%p A309537 seq(a(n), n=0..33);
%t A309537 a[n_] := a[n] = Sum[a[n - j] + With[{t = 5 j^2}, If[IntegerQ@Sqrt[t + 4] || IntegerQ@Sqrt[t - 4], Ceiling[2^(n - j - 1)], 0]], {j, 1, n}];
%t A309537 a /@ Range[0, 33] (* _Jean-François Alcover_, Dec 29 2020, after _Alois P. Heinz_ *)
%Y A309537 Cf. A000045, A102291, A124091, A144115.
%K A309537 nonn
%O A309537 0,3
%A A309537 _Alois P. Heinz_, Aug 06 2019