cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309538 Total number of factorial parts in all compositions of n.

This page as a plain text file.
%I A309538 #13 Jan 10 2023 13:05:03
%S A309538 0,1,3,7,17,40,93,210,469,1036,2268,4928,10640,22848,48832,103936,
%T A309538 220416,465920,982016,2064384,4329472,9060352,18923520,39452672,
%U A309538 82116609,170655746,354156549,734003212,1519386652,3141533760,6488588432,13388218688,27598521024
%N A309538 Total number of factorial parts in all compositions of n.
%H A309538 Alois P. Heinz, <a href="/A309538/b309538.txt">Table of n, a(n) for n = 0..3312</a>
%F A309538 G.f.: Sum_{k>=1} x^(k!)*(1-x)^2/(1-2*x)^2.
%F A309538 a(n) ~ c * 2^n * n, where c = 0.1914062649011611938476562500000000001880790961... - _Vaclav Kotesovec_, Aug 18 2019
%p A309538 g:= proc(n) local i; 1; for i from 2 do
%p A309538       if n=% then 1; break elif n<% then 0; break fi;
%p A309538       %*i od; g(n):=%
%p A309538     end:
%p A309538 a:= proc(n) option remember; add(a(n-j)+
%p A309538       `if`(g(j)=1, ceil(2^(n-j-1)), 0), j=1..n)
%p A309538     end:
%p A309538 seq(a(n), n=0..33);
%t A309538 g[n_] := g[n] = Module[{i, p = 1}, For[i = 2, True, i++, If[n == p, p = 1; Break[], If[n<p, p = 0; Break[]]]; p = p*i]; p];
%t A309538 a[n_] := a[n] = Sum[a[n-j] + If[g[j] == 1, Ceiling[2^(n-j-1)], 0], {j, 1, n}];
%t A309538 Table[a[n], {n, 0, 33}] (* _Jean-François Alcover_, Jan 10 2023, after _Alois P. Heinz_ *)
%Y A309538 Cf. A000142, A102291.
%K A309538 nonn
%O A309538 0,3
%A A309538 _Alois P. Heinz_, Aug 06 2019