cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309540 a(n) is the smallest positive number not yet in the sequence that contains exactly one even digit and exactly one odd digit from a(n-1), and no digit in a(n) is repeated.

This page as a plain text file.
%I A309540 #34 Jan 12 2025 09:06:32
%S A309540 10,102,12,21,120,103,30,130,104,14,41,124,123,23,32,132,125,25,52,
%T A309540 152,126,16,61,106,105,50,150,107,70,170,108,18,81,128,127,27,72,172,
%U A309540 129,29,92,192,142,134,34,43,143,140,109,90,190,160,136,36,63,163
%N A309540 a(n) is the smallest positive number not yet in the sequence that contains exactly one even digit and exactly one odd digit from a(n-1), and no digit in a(n) is repeated.
%H A309540 Robert Israel, <a href="/A309540/b309540.txt">Table of n, a(n) for n = 1..40534</a>
%e A309540 a(2)=102: a(2) is not 100 (since zero would be repeated), nor 101 (since 1 would be repeated).
%p A309540 filter:= proc(n) local L;
%p A309540   L:= convert(n,base,10);
%p A309540   nops(L) = nops(convert(L,set)) and convert(L mod 2,set) = {0,1};
%p A309540 end proc:
%p A309540 Cands:= select(filter, [$11 .. 1000]): nC:= nops(Cands):
%p A309540 R:= 10: r:= 10: r0, r1:= selectremove(type, convert(convert(r,base,10),set),even):
%p A309540 for count from 1 do
%p A309540   found:= false;
%p A309540   for i from 1 to nC+1-count do
%p A309540     x:= Cands[i];
%p A309540     Lx:= convert(convert(x,base,10),set);
%p A309540     if nops(Lx intersect r0) = 1 and nops(Lx intersect r1) = 1 then
%p A309540       found:= true;
%p A309540       R:= R, x;
%p A309540       r:= x;
%p A309540       Cands:= subsop(i=NULL, Cands);
%p A309540       r0, r1:= selectremove(type, convert(convert(r,base,10),set),even);
%p A309540       break
%p A309540     fi
%p A309540   od;
%p A309540   if not found then break fi;
%p A309540 od:
%p A309540 R; # _Robert Israel_, Jan 09 2025
%Y A309540 Cf. A184992, A318700, A309390, A309539, A076654.
%K A309540 nonn,base,fini,full,look
%O A309540 1,1
%A A309540 _Enrique Navarrete_, Aug 06 2019
%E A309540 Edited by _Robert Israel_, Jan 10 2025