This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309569 #31 Aug 12 2019 02:22:44 %S A309569 3,3,2,2,5,8,6,8,3,1,7,3,2,6,1,0,0,1,3,2,5,3,3,5,5,5,0,8,8,9,0,9,1,7, %T A309569 3,2,9,4,3,9,9,8,3,3,0,1,4,2,7,6,9,5,1,5,9,3,2,5,3,7,3,1,4,8,9,7,0,1, %U A309569 9,1,1,4,1,4,7,4,9,0,7,7,1,2,4,9,3,4,3,8,0,8,1,8,9,8,3,5,5,1,9,2 %N A309569 Digits of the 10-adic integer (11/3)^(1/3). %H A309569 Seiichi Manyama, <a href="/A309569/b309569.txt">Table of n, a(n) for n = 0..10000</a> %F A309569 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 - 11) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309569 3^3 == 7 (mod 10). %e A309569 33^3 == 37 (mod 10^2). %e A309569 233^3 == 337 (mod 10^3). %e A309569 2233^3 == 3337 (mod 10^4). %e A309569 52233^3 == 33337 (mod 10^5). %e A309569 852233^3 == 333337 (mod 10^6). %o A309569 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((11/3+O(2^N))^(1/3), 2^N), Mod((11/3+O(5^N))^(1/3), 5^N)))), N) %o A309569 (Ruby) %o A309569 def A309569(n) %o A309569 ary = [3] %o A309569 a = 3 %o A309569 n.times{|i| %o A309569 b = (a + 9 * (3 * a ** 3 - 11)) % (10 ** (i + 2)) %o A309569 ary << (b - a) / (10 ** (i + 1)) %o A309569 a = b %o A309569 } %o A309569 ary %o A309569 end %o A309569 p A309569(100) %Y A309569 Cf. A173766, A309600, A309641. %K A309569 nonn,base %O A309569 0,1 %A A309569 _Seiichi Manyama_, Aug 10 2019