This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309570 #32 Aug 12 2019 02:21:23 %S A309570 9,7,1,6,2,8,6,6,2,1,4,1,3,6,8,9,5,4,5,0,1,9,9,1,2,8,8,9,3,1,1,7,6,9, %T A309570 9,2,5,2,5,2,9,5,6,9,2,0,0,1,7,3,4,5,3,1,2,3,2,7,3,1,5,5,4,5,2,4,6,6, %U A309570 8,2,5,6,6,6,8,0,0,9,0,9,8,8,7,0,6,1,6,1,5,8,1,2,4,2,5,0,3,2,7,2 %N A309570 Digits of the 10-adic integer (17/3)^(1/3). %H A309570 Seiichi Manyama, <a href="/A309570/b309570.txt">Table of n, a(n) for n = 0..10000</a> %F A309570 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 3 * b(n-1)^3 - 17 mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309570 9^3 == 9 (mod 10). %e A309570 79^3 == 39 (mod 10^2). %e A309570 179^3 == 339 (mod 10^3). %e A309570 6179^3 == 3339 (mod 10^4). %e A309570 26179^3 == 33339 (mod 10^5). %e A309570 826179^3 == 333339 (mod 10^6). %o A309570 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((17/3+O(2^N))^(1/3), 2^N), Mod((17/3+O(5^N))^(1/3), 5^N)))), N) %o A309570 (Ruby) %o A309570 def A309570(n) %o A309570 ary = [9] %o A309570 a = 9 %o A309570 n.times{|i| %o A309570 b = (a + 3 * a ** 3 - 17) % (10 ** (i + 2)) %o A309570 ary << (b - a) / (10 ** (i + 1)) %o A309570 a = b %o A309570 } %o A309570 ary %o A309570 end %o A309570 p A309570(100) %Y A309570 Cf. A173764, A309600, A309640. %K A309570 nonn,base %O A309570 0,1 %A A309570 _Seiichi Manyama_, Aug 10 2019