This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309584 #21 Jun 17 2024 10:50:01 %S A309584 3,6,9,10,11,12,15,17,18,19,21,22,26,27,30,33,34,35,36,38,39,42,43,44, %T A309584 45,50,51,54,55,57,58,59,60,63,66,67,68,69,70,73,74,75,76,77,78,81,83, %U A309584 84,85,86,87,89,90,91,93,95,97,99,102,105,106,107,108,110 %N A309584 Numbers k with 2 zeros in a fundamental period of A000129 mod k. %C A309584 Numbers k such that A214027(k) = 2. %C A309584 This sequence contains all numbers k such that 4 divides A214028(k). As a consequence, this sequence contains all numbers congruent to 3 modulo 8. %C A309584 This sequence contains all odd numbers k such that 8 divides A175181(k). %H A309584 Jianing Song, <a href="/A309584/b309584.txt">Table of n, a(n) for n = 1..10000</a> %o A309584 (PARI) for(k=1, 100, if(A214027(k)==2, print1(k, ", "))) %Y A309584 Cf. A175181, A214028. %Y A309584 Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k. %Y A309584 | m=1 | m=2 | m=3 %Y A309584 -----------------------------+----------+----------+--------- %Y A309584 The sequence {x(n)} | A000045 | A000129 | A006190 %Y A309584 The sequence {w(k)} | A001176 | A214027 | A322906 %Y A309584 Primes p such that w(p) = 1 | A112860* | A309580 | A309586 %Y A309584 Primes p such that w(p) = 2 | A053027 | A309581 | A309587 %Y A309584 Primes p such that w(p) = 4 | A053028 | A261580 | A309588 %Y A309584 Numbers k such that w(k) = 1 | A053031 | A309583 | A309591 %Y A309584 Numbers k such that w(k) = 2 | A053030 | this seq | A309592 %Y A309584 Numbers k such that w(k) = 4 | A053029 | A309585 | A309593 %Y A309584 * and also A053032 U {2} %K A309584 nonn %O A309584 1,1 %A A309584 _Jianing Song_, Aug 10 2019