This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309585 #17 Jun 17 2024 10:50:06 %S A309585 5,13,25,29,37,53,61,65,101,109,125,137,145,149,157,169,173,181,185, %T A309585 197,229,265,269,277,293,305,317,325,349,373,377,389,397,421,461,481, %U A309585 505,509,521,541,545,557,569,593,613,625,653,661,677,685,689,701,709 %N A309585 Numbers k with 4 zeros in a fundamental period of A000129 mod k. %C A309585 Numbers k such that A214027(k) = 4. %C A309585 Also numbers k such that A214028(k) is odd. %H A309585 Jianing Song, <a href="/A309585/b309585.txt">Table of n, a(n) for n = 1..1000</a> %o A309585 (PARI) for(k=1, 700, if(A214027(k)==4, print1(k, ", "))) %Y A309585 Cf. A214028. %Y A309585 Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k. %Y A309585 | m=1 | m=2 | m=3 %Y A309585 -----------------------------+----------+----------+--------- %Y A309585 The sequence {x(n)} | A000045 | A000129 | A006190 %Y A309585 The sequence {w(k)} | A001176 | A214027 | A322906 %Y A309585 Primes p such that w(p) = 1 | A112860* | A309580 | A309586 %Y A309585 Primes p such that w(p) = 2 | A053027 | A309581 | A309587 %Y A309585 Primes p such that w(p) = 4 | A053028 | A261580 | A309588 %Y A309585 Numbers k such that w(k) = 1 | A053031 | A309583 | A309591 %Y A309585 Numbers k such that w(k) = 2 | A053030 | A309584 | A309592 %Y A309585 Numbers k such that w(k) = 4 | A053029 | this seq | A309593 %Y A309585 * and also A053032 U {2} %K A309585 nonn %O A309585 1,1 %A A309585 _Jianing Song_, Aug 10 2019