This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309586 #33 Jun 25 2024 08:29:58 %S A309586 2,3,23,43,53,61,79,101,103,107,127,131,139,173,179,191,199,211,251, %T A309586 263,277,283,311,347,367,419,433,439,443,467,491,503,523,547,563,569, %U A309586 571,599,607,647,659,677,719,727,751,757,823,829,859,881,883,887,907 %N A309586 Primes p with 1 zero in a fundamental period of A006190 mod p. %C A309586 Primes p such that A322906(p) = 1. %C A309586 For p > 2, p is in this sequence if and only if A175182(p) == 2 (mod 4), and if and only if A322907(p) == 2 (mod 4). For a proof of the equivalence between A322906(p) = 1 and A322907(p) == 2 (mod 4), see Section 2 of my link below. %C A309586 This sequence contains all primes congruent to 3, 23, 27, 35, 43, 51 modulo 52. This corresponds to case (3) for k = 11 in the Conclusion of Section 1 of my link below. %C A309586 Conjecturely, this sequence has density 1/3 in the primes. [Comment rewritten by _Jianing Song_, Jun 16 2024 and Jun 25 2024] %H A309586 Jianing Song, <a href="/A309586/b309586.txt">Table of n, a(n) for n = 1..1200</a> %H A309586 Jianing Song, <a href="/A053027/a053027.pdf">Lucas sequences and entry point modulo p</a> %o A309586 (PARI) forprime(p=2, 900, if(A322906(p)==1, print1(p, ", "))) %Y A309586 Cf. A175182, A322907. %Y A309586 Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k. %Y A309586 | m=1 | m=2 | m=3 %Y A309586 -----------------------------+----------+---------+---------- %Y A309586 The sequence {x(n)} | A000045 | A000129 | A006190 %Y A309586 The sequence {w(k)} | A001176 | A214027 | A322906 %Y A309586 Primes p such that w(p) = 1 | A112860* | A309580 | this seq %Y A309586 Primes p such that w(p) = 2 | A053027 | A309581 | A309587 %Y A309586 Primes p such that w(p) = 4 | A053028 | A261580 | A309588 %Y A309586 Numbers k such that w(k) = 1 | A053031 | A309583 | A309591 %Y A309586 Numbers k such that w(k) = 2 | A053030 | A309584 | A309592 %Y A309586 Numbers k such that w(k) = 4 | A053029 | A309585 | A309593 %Y A309586 * and also A053032 U {2} %K A309586 nonn %O A309586 1,1 %A A309586 _Jianing Song_, Aug 10 2019