This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309591 #20 Jun 17 2024 10:50:18 %S A309591 1,2,3,4,6,9,12,18,23,27,36,43,46,53,54,61,69,79,81,86,92,101,103,106, %T A309591 107,108,122,127,129,131,138,139,158,159,162,172,173,179,183,191,199, %U A309591 202,206,207,211,212,214,237,243,244,251,254,258,262,263,276 %N A309591 Numbers k with 1 zero in a fundamental period of A006190 mod k. %C A309591 Numbers k such that A322906(k) = 1. %C A309591 The odd numbers k satisfy A175182(k) == 2 (mod 4). %H A309591 Jianing Song, <a href="/A309591/b309591.txt">Table of n, a(n) for n = 1..3000</a> %o A309591 (PARI) for(k=1, 300, if(A322906(k)==1, print1(k, ", "))) %Y A309591 Cf. A175182. %Y A309591 Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k. %Y A309591 | m=1 | m=2 | m=3 %Y A309591 -----------------------------+----------+---------+---------- %Y A309591 The sequence {x(n)} | A000045 | A000129 | A006190 %Y A309591 The sequence {w(k)} | A001176 | A214027 | A322906 %Y A309591 Primes p such that w(p) = 1 | A112860* | A309580 | A309586 %Y A309591 Primes p such that w(p) = 2 | A053027 | A309581 | A309587 %Y A309591 Primes p such that w(p) = 4 | A053028 | A261580 | A309588 %Y A309591 Numbers k such that w(k) = 1 | A053031 | A309583 | this seq %Y A309591 Numbers k such that w(k) = 2 | A053030 | A309584 | A309592 %Y A309591 Numbers k such that w(k) = 4 | A053029 | A309585 | A309593 %Y A309591 * and also A053032 U {2} %K A309591 nonn %O A309591 1,2 %A A309591 _Jianing Song_, Aug 10 2019