This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309592 #22 Jun 17 2024 10:50:10 %S A309592 7,8,11,14,15,16,17,19,20,21,22,24,28,30,31,32,33,34,35,38,39,40,42, %T A309592 44,45,47,48,49,51,52,55,56,57,59,60,62,63,64,66,67,68,70,71,72,75,76, %U A309592 77,78,80,83,84,85,87,88,90,91,93,94,95,96,98,99,100,102,104 %N A309592 Numbers k with 2 zeros in a fundamental period of A006190 mod k. %C A309592 Numbers k such that A322906(k) = 2. %C A309592 This sequence contains all numbers k such that 4 divides A322907(k). As a consequence, this sequence contains all numbers congruent to 7, 11, 15, 19, 31, 47 modulo 52. %C A309592 This sequence contains all odd numbers k such that 8 divides A175182(k). %H A309592 Jianing Song, <a href="/A309592/b309592.txt">Table of n, a(n) for n = 1..10000</a> %o A309592 (PARI) for(k=1, 100, if(A322906(k)==2, print1(k, ", "))) %Y A309592 Cf. A175182, A322907. %Y A309592 Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k. %Y A309592 | m=1 | m=2 | m=3 %Y A309592 -----------------------------+----------+---------+---------- %Y A309592 The sequence {x(n)} | A000045 | A000129 | A006190 %Y A309592 The sequence {w(k)} | A001176 | A214027 | A322906 %Y A309592 Primes p such that w(p) = 1 | A112860* | A309580 | A309586 %Y A309592 Primes p such that w(p) = 2 | A053027 | A309581 | A309587 %Y A309592 Primes p such that w(p) = 4 | A053028 | A261580 | A309588 %Y A309592 Numbers k such that w(k) = 1 | A053031 | A309583 | A309591 %Y A309592 Numbers k such that w(k) = 2 | A053030 | A309584 | this seq %Y A309592 Numbers k such that w(k) = 4 | A053029 | A309585 | A309593 %Y A309592 * and also A053032 U {2} %K A309592 nonn %O A309592 1,1 %A A309592 _Jianing Song_, Aug 10 2019