This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309593 #16 Jun 17 2024 10:50:14 %S A309593 5,10,13,25,26,29,37,41,50,58,65,73,74,82,89,97,109,125,130,137,145, %T A309593 146,149,157,169,178,181,185,193,194,197,205,218,229,233,241,250,269, %U A309593 274,281,290,293,298,314,317,325,338,349,353,362,365,370,373,377 %N A309593 Numbers k with 4 zeros in a fundamental period of A006190 mod k. %C A309593 Numbers k such that A322906(k) = 4. %C A309593 Also numbers k such that A214027(k) is odd. %H A309593 Jianing Song, <a href="/A309593/b309593.txt">Table of n, a(n) for n = 1..2000</a> %o A309593 (PARI) for(k=1, 400, if(A322906(k)==4, print1(k, ", "))) %Y A309593 Cf. A322907. %Y A309593 Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k. %Y A309593 | m=1 | m=2 | m=3 %Y A309593 -----------------------------+----------+---------+---------- %Y A309593 The sequence {x(n)} | A000045 | A000129 | A006190 %Y A309593 The sequence {w(k)} | A001176 | A214027 | A322906 %Y A309593 Primes p such that w(p) = 1 | A112860* | A309580 | A309586 %Y A309593 Primes p such that w(p) = 2 | A053027 | A309581 | A309587 %Y A309593 Primes p such that w(p) = 4 | A053028 | A261580 | A309588 %Y A309593 Numbers k such that w(k) = 1 | A053031 | A309583 | A309591 %Y A309593 Numbers k such that w(k) = 2 | A053030 | A309584 | A309592 %Y A309593 Numbers k such that w(k) = 4 | A053029 | A309585 | this seq %Y A309593 * and also A053032 U {2} %K A309593 nonn %O A309593 1,1 %A A309593 _Jianing Song_, Aug 10 2019