This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309595 #31 Aug 12 2019 10:17:29 %S A309595 1,8,0,1,1,8,6,6,4,1,6,0,3,9,9,0,9,3,8,0,7,1,6,5,5,2,0,8,8,4,6,7,9,8, %T A309595 3,0,6,7,0,7,4,0,5,9,9,5,2,0,6,7,8,9,7,8,7,2,1,2,0,7,4,8,8,4,3,6,0,6, %U A309595 8,2,1,4,2,8,6,7,0,5,7,4,9,7,7,5,8,4,5,9,5,7,8,4,7,9,4,4,3,7,9,1 %N A309595 Digits of the 10-adic integer (-31/9)^(1/3). %H A309595 Seiichi Manyama, <a href="/A309595/b309595.txt">Table of n, a(n) for n = 0..10000</a> %F A309595 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 1, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 + 31) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309595 1^3 == 1 (mod 10). %e A309595 81^3 == 41 (mod 10^2). %e A309595 81^3 == 441 (mod 10^3). %e A309595 1081^3 == 4441 (mod 10^4). %e A309595 11081^3 == 44441 (mod 10^5). %e A309595 811081^3 == 444441 (mod 10^6). %o A309595 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((-31/9+O(2^N))^(1/3), 2^N), Mod((-31/9+O(5^N))^(1/3), 5^N)))), N) %o A309595 (Ruby) %o A309595 def A309595(n) %o A309595 ary = [1] %o A309595 a = 1 %o A309595 n.times{|i| %o A309595 b = (a + 7 * (9 * a ** 3 + 31)) % (10 ** (i + 2)) %o A309595 ary << (b - a) / (10 ** (i + 1)) %o A309595 a = b %o A309595 } %o A309595 ary %o A309595 end %o A309595 p A309595(100) %Y A309595 Cf. A173768, A309600, A309614. %K A309595 nonn,base %O A309595 0,2 %A A309595 _Seiichi Manyama_, Aug 10 2019