This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309600 #41 Aug 11 2019 11:18:41 %S A309600 7,1,6,8,7,0,3,3,3,6,5,2,7,8,7,2,6,7,1,1,0,3,3,2,4,5,6,5,3,6,5,3,3,3, %T A309600 7,5,2,4,7,5,0,2,9,0,6,7,0,8,8,6,6,7,0,1,2,4,5,3,2,8,6,9,7,3,1,6,6,9, %U A309600 5,0,1,6,4,6,8,0,3,8,5,9,6,1,3,5,3,7,9,7,2,3,6,6,9,0,0,0,5,3,7,7,2 %N A309600 Digits of the 10-adic integer (17/9)^(1/3). %H A309600 Seiichi Manyama, <a href="/A309600/b309600.txt">Table of n, a(n) for n = 0..10000</a> %F A309600 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 17) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309600 7^3 == 3 (mod 10). %e A309600 17^3 == 13 (mod 10^2). %e A309600 617^3 == 113 (mod 10^3). %e A309600 8617^3 == 1113 (mod 10^4). %e A309600 78617^3 == 11113 (mod 10^5). %e A309600 78617^3 == 111113 (mod 10^6). %o A309600 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((17/9+O(2^N))^(1/3), 2^N), Mod((17/9+O(5^N))^(1/3), 5^N)))), N) %o A309600 (Ruby) %o A309600 def A309600(n) %o A309600 ary = [7] %o A309600 a = 7 %o A309600 n.times{|i| %o A309600 b = (a + 3 * (9 * a ** 3 - 17)) % (10 ** (i + 2)) %o A309600 ary << (b - a) / (10 ** (i + 1)) %o A309600 a = b %o A309600 } %o A309600 ary %o A309600 end %o A309600 p A309600(100) %Y A309600 10-adic integer x. %Y A309600 A225404 (x^3 = ...000003). %Y A309600 A225405 (x^3 = ...000007). %Y A309600 A225406 (x^3 = ...000009). %Y A309600 A153042 (x^3 = ...111111). %Y A309600 this sequence (x^3 = ...111113). %Y A309600 A309601 (x^3 = ...111117). %Y A309600 A309602 (x^3 = ...111119). %Y A309600 A309603 (x^3 = ...222221). %Y A309600 A225410 (x^3 = ...222223). %Y A309600 A309604 (x^3 = ...222227). %Y A309600 A309605 (x^3 = ...222229). %Y A309600 A309606 (x^3 = ...333331). %Y A309600 A225402 (x^3 = ...333333). %Y A309600 A309569 (x^3 = ...333337). %Y A309600 A309570 (x^3 = ...333339). %Y A309600 A309595 (x^3 = ...444441). %Y A309600 A309608 (x^3 = ...444443). %Y A309600 A309609 (x^3 = ...444447). %Y A309600 A309610 (x^3 = ...444449). %Y A309600 A309611 (x^3 = ...555551). %Y A309600 A309612 (x^3 = ...555553). %Y A309600 A309613 (x^3 = ...555557). %Y A309600 A309614 (x^3 = ...555559). %Y A309600 A309640 (x^3 = ...666661). %Y A309600 A309641 (x^3 = ...666663). %Y A309600 A225411 (x^3 = ...666667). %Y A309600 A309642 (x^3 = ...666669). %Y A309600 A309643 (x^3 = ...777771). %Y A309600 A309644 (x^3 = ...777773). %Y A309600 A225401 (x^3 = ...777777). %Y A309600 A309645 (x^3 = ...777779). %Y A309600 A309646 (x^3 = ...888881). %Y A309600 A309647 (x^3 = ...888883). %Y A309600 A309648 (x^3 = ...888887). %Y A309600 A225412 (x^3 = ...888889). %Y A309600 A225409 (x^3 = ...999991). %Y A309600 A225408 (x^3 = ...999993). %Y A309600 A225407 (x^3 = ...999997). %K A309600 nonn,base %O A309600 0,1 %A A309600 _Seiichi Manyama_, Aug 09 2019