This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309601 #22 Aug 11 2019 14:38:19 %S A309601 3,7,3,8,6,7,0,5,3,0,8,5,3,4,8,1,3,0,9,0,3,2,9,2,3,6,3,2,4,3,5,1,5,2, %T A309601 9,8,0,7,6,0,3,9,9,4,2,5,3,0,3,2,0,3,2,8,2,8,7,8,3,1,0,0,4,6,4,1,8,9, %U A309601 4,8,5,3,5,3,7,3,1,6,7,9,1,1,8,5,0,2,5,7,6,3,8,9,4,2,7,3,0,3,6,6 %N A309601 Digits of the 10-adic integer (53/9)^(1/3). %H A309601 Seiichi Manyama, <a href="/A309601/b309601.txt">Table of n, a(n) for n = 0..10000</a> %F A309601 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 53) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309601 3^3 == 7 (mod 10). %e A309601 73^3 == 17 (mod 10^2). %e A309601 373^3 == 117 (mod 10^3). %e A309601 8373^3 == 1117 (mod 10^4). %e A309601 68373^3 == 11117 (mod 10^5). %e A309601 768373^3 == 111117 (mod 10^6). %o A309601 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((53/9+O(2^N))^(1/3), 2^N), Mod((53/9+O(5^N))^(1/3), 5^N)))), N) %o A309601 (Ruby) %o A309601 def A309601(n) %o A309601 ary = [3] %o A309601 a = 3 %o A309601 n.times{|i| %o A309601 b = (a + 3 * (9 * a ** 3 - 53)) % (10 ** (i + 2)) %o A309601 ary << (b - a) / (10 ** (i + 1)) %o A309601 a = b %o A309601 } %o A309601 ary %o A309601 end %o A309601 p A309601(100) %Y A309601 Cf. A309600. %K A309601 nonn,base %O A309601 0,1 %A A309601 _Seiichi Manyama_, Aug 09 2019