This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309602 #20 Aug 12 2019 02:40:52 %S A309602 9,3,6,8,3,2,7,4,5,4,1,1,9,2,2,9,0,0,3,4,5,8,1,0,7,1,6,4,6,5,3,0,3,1, %T A309602 5,6,9,7,3,2,4,2,4,2,0,6,2,2,0,2,3,6,7,8,4,6,5,1,5,7,5,0,9,4,4,0,9,5, %U A309602 5,1,9,0,2,4,7,7,6,6,4,0,1,0,6,2,9,6,8,3,9,7,9,6,0,2,3,4,6,8,6,8 %N A309602 Digits of the 10-adic integer (71/9)^(1/3). %H A309602 Seiichi Manyama, <a href="/A309602/b309602.txt">Table of n, a(n) for n = 0..10000</a> %F A309602 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 - 71) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309602 9^3 == 9 (mod 10). %e A309602 39^3 == 19 (mod 10^2). %e A309602 639^3 == 119 (mod 10^3). %e A309602 8639^3 == 1119 (mod 10^4). %e A309602 38639^3 == 11119 (mod 10^5). %e A309602 238639^3 == 111119 (mod 10^6). %o A309602 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((71/9+O(2^N))^(1/3), 2^N), Mod((71/9+O(5^N))^(1/3), 5^N)))), N) %o A309602 (Ruby) %o A309602 def A309602(n) %o A309602 ary = [9] %o A309602 a = 9 %o A309602 n.times{|i| %o A309602 b = (a + 7 * (9 * a ** 3 - 71)) % (10 ** (i + 2)) %o A309602 ary << (b - a) / (10 ** (i + 1)) %o A309602 a = b %o A309602 } %o A309602 ary %o A309602 end %o A309602 p A309602(100) %Y A309602 Cf. A165247, A309600, A309646. %K A309602 nonn %O A309602 0,1 %A A309602 _Seiichi Manyama_, Aug 09 2019