This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309604 #18 Aug 12 2019 02:40:18 %S A309604 3,0,6,8,5,0,7,1,6,9,9,9,1,7,3,8,5,6,2,9,8,1,0,9,6,8,3,0,5,1,5,1,5,7, %T A309604 7,1,1,5,9,9,9,9,1,2,9,9,2,1,0,3,6,9,9,5,9,4,0,5,3,0,3,0,7,9,8,1,4,6, %U A309604 7,9,8,7,9,4,2,0,6,6,0,5,4,3,7,9,6,8,6,4,8,5,9,4,1,7,4,2,7,3,5,0 %N A309604 Digits of the 10-adic integer (43/9)^(1/3). %H A309604 Seiichi Manyama, <a href="/A309604/b309604.txt">Table of n, a(n) for n = 0..10000</a> %F A309604 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 43) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309604 3^3 == 7 (mod 10). %e A309604 3^3 == 27 (mod 10^2). %e A309604 603^3 == 227 (mod 10^3). %e A309604 8603^3 == 2227 (mod 10^4). %e A309604 58603^3 == 22227 (mod 10^5). %e A309604 58603^3 == 222227 (mod 10^6). %o A309604 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((43/9+O(2^N))^(1/3), 2^N), Mod((43/9+O(5^N))^(1/3), 5^N)))), N) %o A309604 (Ruby) %o A309604 def A309604(n) %o A309604 ary = [3] %o A309604 a = 3 %o A309604 n.times{|i| %o A309604 b = (a + 3 * (9 * a ** 3 - 43)) % (10 ** (i + 2)) %o A309604 ary << (b - a) / (10 ** (i + 1)) %o A309604 a = b %o A309604 } %o A309604 ary %o A309604 end %o A309604 p A309604(100) %Y A309604 Cf. A309600, A309644. %K A309604 nonn %O A309604 0,1 %A A309604 _Seiichi Manyama_, Aug 09 2019