This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309605 #19 Aug 12 2019 02:40:04 %S A309605 9,0,5,0,5,4,7,1,9,1,6,0,9,8,5,7,1,0,7,3,1,0,9,5,1,4,9,9,5,7,9,3,0,1, %T A309605 1,9,0,1,4,1,4,0,6,4,4,1,8,0,0,1,7,6,9,1,5,3,8,1,4,2,6,7,1,3,3,9,8,0, %U A309605 4,5,3,7,2,5,2,7,5,5,4,6,1,0,0,2,2,3,2,0,7,3,4,2,7,7,1,0,3,1,0,9 %N A309605 Digits of the 10-adic integer (61/9)^(1/3). %H A309605 Seiichi Manyama, <a href="/A309605/b309605.txt">Table of n, a(n) for n = 0..10000</a> %F A309605 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 - 61) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309605 9^3 == 9 (mod 10). %e A309605 9^3 == 29 (mod 10^2). %e A309605 509^3 == 229 (mod 10^3). %e A309605 509^3 == 2229 (mod 10^4). %e A309605 50509^3 == 22229 (mod 10^5). %e A309605 450509^3 == 222229 (mod 10^6). %o A309605 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((61/9+O(2^N))^(1/3), 2^N), Mod((61/9+O(5^N))^(1/3), 5^N)))), N) %o A309605 (Ruby) %o A309605 def A309605(n) %o A309605 ary = [9] %o A309605 a = 9 %o A309605 n.times{|i| %o A309605 b = (a + 7 * (9 * a ** 3 - 61)) % (10 ** (i + 2)) %o A309605 ary << (b - a) / (10 ** (i + 1)) %o A309605 a = b %o A309605 } %o A309605 ary %o A309605 end %o A309605 p A309605(100) %Y A309605 Cf. A309600, A309643. %K A309605 nonn %O A309605 0,1 %A A309605 _Seiichi Manyama_, Aug 09 2019