This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309606 #23 Aug 12 2019 02:39:49 %S A309606 1,1,0,4,6,7,6,7,5,8,3,7,0,5,9,7,8,0,8,8,1,6,9,1,7,4,9,2,4,9,4,7,4,6, %T A309606 3,2,5,4,7,0,0,9,9,2,7,7,5,4,0,2,9,8,2,3,0,5,9,8,2,9,2,9,3,0,1,8,4,0, %U A309606 2,9,1,7,1,3,1,9,5,8,1,2,4,0,3,5,2,7,2,3,5,5,5,6,5,9,9,4,1,1,0,9 %N A309606 Digits of the 10-adic integer (-7/3)^(1/3). %H A309606 Seiichi Manyama, <a href="/A309606/b309606.txt">Table of n, a(n) for n = 0..10000</a> %F A309606 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 1, b(n) = b(n-1) + 3 * b(n-1)^3 + 7 mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309606 1^3 == 1 (mod 10). %e A309606 11^3 == 31 (mod 10^2). %e A309606 11^3 == 331 (mod 10^3). %e A309606 4011^3 == 3331 (mod 10^4). %e A309606 64011^3 == 33331 (mod 10^5). %e A309606 764011^3 == 333331 (mod 10^6). %p A309606 op([1,3],padic:-rootp(x^3+7/3,10,100)); # _Robert Israel_, Aug 09 2019 %o A309606 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((-7/3+O(2^N))^(1/3), 2^N), Mod((-7/3+O(5^N))^(1/3), 5^N)))), N) %o A309606 (Ruby) %o A309606 def A309606(n) %o A309606 ary = [1] %o A309606 a = 1 %o A309606 n.times{|i| %o A309606 b = (a + 3 * a ** 3 + 7) % (10 ** (i + 2)) %o A309606 ary << (b - a) / (10 ** (i + 1)) %o A309606 a = b %o A309606 } %o A309606 ary %o A309606 end %o A309606 p A309606(100) %Y A309606 Cf. A309600, A309642. %K A309606 nonn %O A309606 0,4 %A A309606 _Seiichi Manyama_, Aug 09 2019