This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309610 #22 Aug 12 2019 10:17:17 %S A309610 9,4,6,5,9,6,4,6,9,6,3,6,9,7,3,3,0,2,6,9,3,9,8,4,7,8,8,6,1,5,5,7,1,8, %T A309610 4,4,0,3,6,1,8,2,1,5,9,2,0,3,8,9,5,6,4,1,5,7,2,0,1,8,9,8,3,1,1,7,3,6, %U A309610 8,6,1,3,7,2,5,7,1,7,7,3,7,1,7,6,9,7,1,7,0,3,1,8,7,3,1,0,6,2,3,3 %N A309610 Digits of the 10-adic integer (41/9)^(1/3). %H A309610 Seiichi Manyama, <a href="/A309610/b309610.txt">Table of n, a(n) for n = 0..10000</a> %F A309610 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 - 41) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n %e A309610 9^3 == 9 (mod 10). %e A309610 49^3 == 49 (mod 10^2). %e A309610 649^3 == 449 (mod 10^3). %e A309610 5649^3 == 4449 (mod 10^4). %e A309610 95649^3 == 44449 (mod 10^5). %e A309610 695649^3 == 444449 (mod 10^6). %o A309610 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((41/9+O(2^N))^(1/3), 2^N), Mod((41/9+O(5^N))^(1/3), 5^N)))), N) %o A309610 (Ruby) %o A309610 def A309610(n) %o A309610 ary = [9] %o A309610 a = 9 %o A309610 n.times{|i| %o A309610 b = (a + 7 * (9 * a ** 3 - 41)) % (10 ** (i + 2)) %o A309610 ary << (b - a) / (10 ** (i + 1)) %o A309610 a = b %o A309610 } %o A309610 ary %o A309610 end %o A309610 p A309610(100) %Y A309610 Cf. A173776, A309600, A309611. %K A309610 nonn,base %O A309610 0,1 %A A309610 _Seiichi Manyama_, Aug 10 2019