This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309611 #19 Aug 12 2019 10:17:13 %S A309611 1,5,3,4,0,3,5,3,0,3,6,3,0,2,6,6,9,7,3,0,6,0,1,5,2,1,1,3,8,4,4,2,8,1, %T A309611 5,5,9,6,3,8,1,7,8,4,0,7,9,6,1,0,4,3,5,8,4,2,7,9,8,1,0,1,6,8,8,2,6,3, %U A309611 1,3,8,6,2,7,4,2,8,2,2,6,2,8,2,3,0,2,8,2,9,6,8,1,2,6,8,9,3,7,6,6 %N A309611 Digits of the 10-adic integer (-41/9)^(1/3). %H A309611 Seiichi Manyama, <a href="/A309611/b309611.txt">Table of n, a(n) for n = 0..10000</a> %F A309611 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 1, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 + 41) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n %e A309611 1^3 == 1 (mod 10). %e A309611 51^3 == 51 (mod 10^2). %e A309611 351^3 == 551 (mod 10^3). %e A309611 4351^3 == 5551 (mod 10^4). %e A309611 4351^3 == 55551 (mod 10^5). %e A309611 304351^3 == 555551 (mod 10^6). %o A309611 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((-41/9+O(2^N))^(1/3), 2^N), Mod((-41/9+O(5^N))^(1/3), 5^N)))), N) %o A309611 (Ruby) %o A309611 def A309611(n) %o A309611 ary = [1] %o A309611 a = 1 %o A309611 n.times{|i| %o A309611 b = (a + 7 * (9 * a ** 3 + 41)) % (10 ** (i + 2)) %o A309611 ary << (b - a) / (10 ** (i + 1)) %o A309611 a = b %o A309611 } %o A309611 ary %o A309611 end %o A309611 p A309611(100) %Y A309611 Cf. A173804, A309600, A309610. %K A309611 nonn,base %O A309611 0,2 %A A309611 _Seiichi Manyama_, Aug 10 2019