This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309612 #22 Aug 12 2019 10:17:09 %S A309612 7,3,7,0,2,3,9,5,2,5,7,6,5,0,9,7,8,3,4,4,5,4,0,2,6,6,7,3,5,0,3,9,9,3, %T A309612 5,0,4,6,7,6,8,0,3,6,6,9,4,3,8,8,5,2,7,6,8,3,7,4,2,0,0,2,6,4,8,9,1,5, %U A309612 7,9,7,3,6,8,3,1,7,3,5,1,5,6,5,4,0,4,6,1,0,1,3,4,2,0,8,2,7,2,3,8 %N A309612 Digits of the 10-adic integer (-23/9)^(1/3). %H A309612 Seiichi Manyama, <a href="/A309612/b309612.txt">Table of n, a(n) for n = 0..10000</a> %F A309612 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 + 23) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n %e A309612 7^3 == 3 (mod 10). %e A309612 37^3 == 53 (mod 10^2). %e A309612 737^3 == 553 (mod 10^3). %e A309612 737^3 == 5553 (mod 10^4). %e A309612 20737^3 == 55553 (mod 10^5). %e A309612 320737^3 == 555553 (mod 10^6). %o A309612 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((-23/9+O(2^N))^(1/3), 2^N), Mod((-23/9+O(5^N))^(1/3), 5^N)))), N) %o A309612 (Ruby) %o A309612 def A309612(n) %o A309612 ary = [7] %o A309612 a = 7 %o A309612 n.times{|i| %o A309612 b = (a + 3 * (9 * a ** 3 + 23)) % (10 ** (i + 2)) %o A309612 ary << (b - a) / (10 ** (i + 1)) %o A309612 a = b %o A309612 } %o A309612 ary %o A309612 end %o A309612 p A309612(100) %Y A309612 Cf. A173802, A309600, A309609. %K A309612 nonn,base %O A309612 0,1 %A A309612 _Seiichi Manyama_, Aug 10 2019