This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309613 #22 Aug 12 2019 10:17:05 %S A309613 3,9,6,9,6,6,2,5,6,6,5,7,4,8,2,6,1,5,2,3,5,4,9,5,1,2,1,5,3,6,9,7,1,6, %T A309613 7,5,5,3,7,6,4,9,5,3,1,7,9,8,0,4,4,5,7,1,2,1,3,3,4,9,1,0,1,7,6,1,9,8, %U A309613 0,4,1,3,7,6,7,1,2,2,0,1,1,5,4,9,2,5,2,8,9,7,5,0,9,1,4,5,4,9,7,3 %N A309613 Digits of the 10-adic integer (13/9)^(1/3). %H A309613 Seiichi Manyama, <a href="/A309613/b309613.txt">Table of n, a(n) for n = 0..10000</a> %F A309613 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 3, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 - 13) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309613 3^3 == 7 (mod 10). %e A309613 93^3 == 57 (mod 10^2). %e A309613 693^3 == 557 (mod 10^3). %e A309613 9693^3 == 5557 (mod 10^4). %e A309613 69693^3 == 55557 (mod 10^5). %e A309613 669693^3 == 555557 (mod 10^6). %o A309613 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((13/9+O(2^N))^(1/3), 2^N), Mod((13/9+O(5^N))^(1/3), 5^N)))), N) %o A309613 (Ruby) %o A309613 def A309613(n) %o A309613 ary = [3] %o A309613 a = 3 %o A309613 n.times{|i| %o A309613 b = (a + 3 * (9 * a ** 3 - 13)) % (10 ** (i + 2)) %o A309613 ary << (b - a) / (10 ** (i + 1)) %o A309613 a = b %o A309613 } %o A309613 ary %o A309613 end %o A309613 p A309613(100) %Y A309613 Cf. A178769, A309600, A309608. %K A309613 nonn,base %O A309613 0,1 %A A309613 _Seiichi Manyama_, Aug 10 2019