A309615 Number of T_0 set-systems covering n vertices that are closed under intersection.
1, 1, 2, 12, 232, 19230, 16113300, 1063117943398, 225402329237199496416
Offset: 0
Examples
The a(0) = 1 through a(3) = 12 set-systems: {} {{1}} {{1},{1,2}} {{1},{1,2},{1,3}} {{2},{1,2}} {{2},{1,2},{2,3}} {{3},{1,3},{2,3}} {{1},{1,2},{1,2,3}} {{1},{1,3},{1,2,3}} {{2},{1,2},{1,2,3}} {{2},{2,3},{1,2,3}} {{3},{1,3},{1,2,3}} {{3},{2,3},{1,2,3}} {{1},{1,2},{1,3},{1,2,3}} {{2},{1,2},{2,3},{1,2,3}} {{3},{1,3},{2,3},{1,2,3}}
Crossrefs
Programs
-
Mathematica
dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}]; Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]
Comments