cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309615 Number of T_0 set-systems covering n vertices that are closed under intersection.

Original entry on oeis.org

1, 1, 2, 12, 232, 19230, 16113300, 1063117943398, 225402329237199496416
Offset: 0

Views

Author

Gus Wiseman, Aug 11 2019

Keywords

Comments

First differs from A182507 at a(5) = 19230, A182507(5) = 12848.
A set-system is a finite set of finite nonempty sets. The dual of a set-system has, for each vertex, one edge consisting of the indices (or positions) of the edges containing that vertex. For example, the dual of {{1,2},{2,3}} is {{1},{1,2},{2}}. The T_0 condition means that the dual is strict (no repeated edges).

Examples

			The a(0) = 1 through a(3) = 12 set-systems:
  {}  {{1}}  {{1},{1,2}}  {{1},{1,2},{1,3}}
             {{2},{1,2}}  {{2},{1,2},{2,3}}
                          {{3},{1,3},{2,3}}
                          {{1},{1,2},{1,2,3}}
                          {{1},{1,3},{1,2,3}}
                          {{2},{1,2},{1,2,3}}
                          {{2},{2,3},{1,2,3}}
                          {{3},{1,3},{1,2,3}}
                          {{3},{2,3},{1,2,3}}
                          {{1},{1,2},{1,3},{1,2,3}}
                          {{2},{1,2},{2,3},{1,2,3}}
                          {{3},{1,3},{2,3},{1,2,3}}
		

Crossrefs

The version with empty edges allowed is A326943.

Programs

  • Mathematica
    dual[eds_]:=Table[First/@Position[eds,x],{x,Union@@eds}];
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&UnsameQ@@dual[#]&&SubsetQ[#,Intersection@@@Tuples[#,2]]&]],{n,0,3}]

Formula

a(n) = A326943(n) - A326944(n).
a(n) = Sum_{k = 1..n} s(n,k) * A326901(k - 1) where s = A048994.
a(n) = Sum_{k = 1..n} s(n,k) * A326902(k) where s = A048994.