A309616 a(n) is the number of ways to represent 2*n in the decibinary system.
1, 2, 4, 6, 10, 13, 18, 22, 30, 36, 45, 52, 64, 72, 84, 93, 110, 122, 140, 154, 177, 192, 214, 230, 258, 277, 304, 324, 356, 376, 405, 426, 464, 490, 528, 557, 604, 634, 678, 710, 765, 802, 854, 892, 952, 989, 1042, 1080, 1146, 1190, 1253, 1300, 1374, 1420, 1486, 1533, 1612, 1664
Offset: 0
Examples
a(1) = 1. a(2) = a(2-1) + a(ceiling(2/2)) = a(1) + a(1) = 1 + 1 = 2. a(3) = a(3-1) + a(ceiling(3/2)) = a(2) + a(2) = 2 + 2 = 4. a(4) = a(4-1) + a(ceiling(4/2)) = a(3) + a(2) = 4 + 2 = 6. a(5) = a(5-1) + a(ceiling(5/2)) = a(4) + a(3) = 6 + 4 = 10. a(6) = a(6-1) + a(ceiling(6/2)) - a(ceiling((6-5)/2)) = a(5) + a(3) - a(1) = 10 + 4 - 1 = 13. a(7) = a(7-1) + a(ceiling(7/2)) - a(ceiling((7-5)/2)) = a(6) + a(4) - a(1) = 13 + 6 - 1 = 18. a(8) = a(8-1) + a(ceiling(8/2)) - a(ceiling((8-5)/2)) = a(7) + a(4) - a(2) = 18 + 6 - 2 = 22. a(9) = a(9-1) + a(ceiling(9/2)) - a(ceiling((9-5)/2)) = a(8) + a(5) - a(2) = 22 + 10 - 2 = 30. a(10) = a(10-1) + a(ceiling(10/2)) - a(ceiling((10-5)/2)) = a(9) + a(5) - a(3) = 30 + 10 - 4 = 36.
Links
- HackerRank, Decibinary Numbers.
Crossrefs
Programs
-
Mathematica
Nest[Append[#1, #1[[-1]] + #1[[Ceiling[#2/2] ]] - If[#2 > 5, #1[[Ceiling[(#2 - 5)/2] ]], 0 ]] & @@ {#, Length@ # + 1} &, {1}, 57] (* Michael De Vlieger, Sep 29 2019 *)
Formula
a(1) = 1. a(n) = a(n-1) + a(ceiling(n/2)) if 1 < n <= 5.
Conjecture: a(n) = a(n-1) + a(ceiling(n/2)) - a(ceiling((n-5)/2)) if n > 5.
I think this sequence is closely related to the 10th binary partition function. The only difference is that every second number is omitted. At the moment, the 10th binary partition function is not in the OEIS. However, my experiments strongly suggest that the 10th binary partition function would indeed look like 1, 1, 2, 2, 4, 4, 6, 6, 10, 10, 13, 13, ...
Extensions
Name corrected by Rémy Sigrist, Oct 15 2019
Comments