A309635 The number of non-equivalent distinguishing coloring partitions of the path on n vertices (n>=1) with at most k parts (k>=1). Square array read by descending antidiagonals: the rows are indexed by n, the number of vertices of the path, and the columns are indexed by k, the number of parts.
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 4, 0, 1, 1, 2, 8, 6, 0, 1, 1, 2, 9, 20, 16, 0, 1, 1, 2, 9, 26, 65, 28, 0, 1, 1, 2, 9, 27, 102, 182, 64, 0, 1, 1, 2, 9, 27, 111, 364, 560, 120, 0, 1, 1, 2, 9, 27, 112, 440, 1436, 1640, 256, 0
Offset: 1
Examples
Table begins: ====================================================================== n\k| 1 2 3 4 5 6 7 8 9 10 ---+------------------------------------------------------------------ 1 | 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 ... 2 | 0, 1, 1, 1, 1, 1, 1, 1, 1, 1 ... 3 | 0, 1, 2, 2, 2, 2, 2, 2, 2, 2 ... 4 | 0, 4, 8, 9, 9, 9, 9, 9, 9, 9 ... 5 | 0, 6, 20, 26, 27, 27, 27, 27, 27, 27 ... 6 | 0, 16, 65, 102, 111, 112, 112, 112, 112, 112 ... 7 | 0, 28, 182, 364, 440, 452, 453, 453, 453, 453 ... 8 | 0, 64, 560, 1436, 1978, 2120, 2136, 2137, 2137, 2137 ... 9 | 0, 120, 1640, 5560, 9082, 10428, 10670, 10690, 10691, 10691 ... 10 | 0, 256, 4961, 22136, 43528, 55039, 58019, 58409, 58434, 58435 ... ... For n=4, we can partition the vertices of P_4 into at most 3 parts in 8 ways such that all these partitions induce distinguishing colorings for P_4 and that all the 8 partitions are non-equivalent. The partitions are as follows: { { 1 }, { 2 }, { 3, 4 } } { { 1 }, { 2, 3 }, { 4 } } { { 1 }, { 2, 4 }, { 3 } } { { 1, 4 }, { 2 }, { 3 } } { { 1 }, { 2, 3, 4 } } { { 1, 2 }, { 3, 4 } } { { 1, 2, 4 }, { 3 } } { { 1, 3 }, { 2, 4 } }
Links
- B. Ahmadi, F. Alinaghipour and M. H. Shekarriz, Number of Distinguishing Colorings and Partitions, arXiv:1910.12102 [math.CO], 2019.
- Mohammad Hadi Shekarriz, GAP code
Formula
T(n, k) = Sum_{i=1..k} A309748(n,i).
Comments