This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309640 #13 Aug 12 2019 10:16:57 %S A309640 1,2,8,3,7,1,3,3,7,8,5,8,6,3,1,0,4,5,4,9,8,0,0,8,7,1,1,0,6,8,8,2,3,0, %T A309640 0,7,4,7,4,7,0,4,3,0,7,9,9,8,2,6,5,4,6,8,7,6,7,2,6,8,4,4,5,4,7,5,3,3, %U A309640 1,7,4,3,3,3,1,9,9,0,9,0,1,1,2,9,3,8,3,8,4,1,8,7,5,7,4,9,6,7,2,7 %N A309640 Digits of the 10-adic integer (-17/3)^(1/3). %H A309640 Seiichi Manyama, <a href="/A309640/b309640.txt">Table of n, a(n) for n = 0..10000</a> %F A309640 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 1, b(n) = b(n-1) + 3 * b(n-1)^3 + 17 mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309640 1^3 == 1 (mod 10). %e A309640 21^3 == 61 (mod 10^2). %e A309640 821^3 == 661 (mod 10^3). %e A309640 3821^3 == 6661 (mod 10^4). %e A309640 73821^3 == 66661 (mod 10^5). %e A309640 173821^3 == 666661 (mod 10^6). %o A309640 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((-17/3+O(2^N))^(1/3), 2^N), Mod((-17/3+O(5^N))^(1/3), 5^N)))), N) %o A309640 (Ruby) %o A309640 def A309640(n) %o A309640 ary = [1] %o A309640 a = 1 %o A309640 n.times{|i| %o A309640 b = (a + 3 * a ** 3 + 17) % (10 ** (i + 2)) %o A309640 ary << (b - a) / (10 ** (i + 1)) %o A309640 a = b %o A309640 } %o A309640 ary %o A309640 end %o A309640 p A309640(100) %Y A309640 Cf. A309570, A309600. %K A309640 nonn,base %O A309640 0,2 %A A309640 _Seiichi Manyama_, Aug 11 2019