This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309641 #13 Aug 12 2019 02:38:20 %S A309641 7,6,7,7,4,1,3,1,6,8,2,6,7,3,8,9,9,8,6,7,4,6,6,4,4,4,9,1,1,0,9,0,8,2, %T A309641 6,7,0,5,6,0,0,1,6,6,9,8,5,7,2,3,0,4,8,4,0,6,7,4,6,2,6,8,5,1,0,2,9,8, %U A309641 0,8,8,5,8,5,2,5,0,9,2,2,8,7,5,0,6,5,6,1,9,1,8,1,0,1,6,4,4,8,0,7 %N A309641 Digits of the 10-adic integer (-11/3)^(1/3). %H A309641 Seiichi Manyama, <a href="/A309641/b309641.txt">Table of n, a(n) for n = 0..10000</a> %F A309641 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 9 * (3 * b(n-1)^3 + 11) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309641 7^3 == 3 (mod 10). %e A309641 67^3 == 63 (mod 10^2). %e A309641 767^3 == 663 (mod 10^3). %e A309641 7767^3 == 6663 (mod 10^4). %e A309641 47767^3 == 66663 (mod 10^5). %e A309641 147767^3 == 666663 (mod 10^6). %o A309641 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((-11/3+O(2^N))^(1/3), 2^N), Mod((-11/3+O(5^N))^(1/3), 5^N)))), N) %o A309641 (Ruby) %o A309641 def A309641(n) %o A309641 ary = [7] %o A309641 a = 7 %o A309641 n.times{|i| %o A309641 b = (a + 9 * (3 * a ** 3 + 11)) % (10 ** (i + 2)) %o A309641 ary << (b - a) / (10 ** (i + 1)) %o A309641 a = b %o A309641 } %o A309641 ary %o A309641 end %o A309641 p A309641(100) %Y A309641 Cf. A309569, A309600. %K A309641 nonn,base %O A309641 0,1 %A A309641 _Seiichi Manyama_, Aug 11 2019