This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309642 #15 Aug 12 2019 02:39:37 %S A309642 9,8,9,5,3,2,3,2,4,1,6,2,9,4,0,2,1,9,1,1,8,3,0,8,2,5,0,7,5,0,5,2,5,3, %T A309642 6,7,4,5,2,9,9,0,0,7,2,2,4,5,9,7,0,1,7,6,9,4,0,1,7,0,7,0,6,9,8,1,5,9, %U A309642 7,0,8,2,8,6,8,0,4,1,8,7,5,9,6,4,7,2,7,6,4,4,4,3,4,0,0,5,8,8,9,0 %N A309642 Digits of the 10-adic integer (7/3)^(1/3). %H A309642 Seiichi Manyama, <a href="/A309642/b309642.txt">Table of n, a(n) for n = 0..10000</a> %F A309642 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 3 * b(n-1)^3 - 7 mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309642 9^3 == 9 (mod 10). %e A309642 89^3 == 69 (mod 10^2). %e A309642 989^3 == 669 (mod 10^3). %e A309642 5989^3 == 6669 (mod 10^4). %e A309642 35989^3 == 66669 (mod 10^5). %e A309642 235989^3 == 666669 (mod 10^6). %o A309642 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((7/3+O(2^N))^(1/3), 2^N), Mod((7/3+O(5^N))^(1/3), 5^N)))), N) %o A309642 (Ruby) %o A309642 def A309642(n) %o A309642 ary = [9] %o A309642 a = 9 %o A309642 n.times{|i| %o A309642 b = (a + 3 * a ** 3 - 7) % (10 ** (i + 2)) %o A309642 ary << (b - a) / (10 ** (i + 1)) %o A309642 a = b %o A309642 } %o A309642 ary %o A309642 end %o A309642 p A309642(100) %Y A309642 Cf. A309600, A309606. %K A309642 nonn %O A309642 0,1 %A A309642 _Seiichi Manyama_, Aug 11 2019