This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309643 #15 Aug 12 2019 02:39:03 %S A309643 1,9,4,9,4,5,2,8,0,8,3,9,0,1,4,2,8,9,2,6,8,9,0,4,8,5,0,0,4,2,0,6,9,8, %T A309643 8,0,9,8,5,8,5,9,3,5,5,8,1,9,9,8,2,3,0,8,4,6,1,8,5,7,3,2,8,6,6,0,1,9, %U A309643 5,4,6,2,7,4,7,2,4,4,5,3,8,9,9,7,7,6,7,9,2,6,5,7,2,2,8,9,6,8,9,0 %N A309643 Digits of the 10-adic integer (-61/9)^(1/3). %H A309643 Seiichi Manyama, <a href="/A309643/b309643.txt">Table of n, a(n) for n = 0..10000</a> %F A309643 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 1, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 + 61) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309643 1^3 == 1 (mod 10). %e A309643 91^3 == 71 (mod 10^2). %e A309643 491^3 == 771 (mod 10^3). %e A309643 9491^3 == 7771 (mod 10^4). %e A309643 49491^3 == 77771 (mod 10^5). %e A309643 549491^3 == 777771 (mod 10^6). %o A309643 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((-61/9+O(2^N))^(1/3), 2^N), Mod((-61/9+O(5^N))^(1/3), 5^N)))), N) %o A309643 (Ruby) %o A309643 def A309643(n) %o A309643 ary = [1] %o A309643 a = 1 %o A309643 n.times{|i| %o A309643 b = (a + 7 * (9 * a ** 3 + 61)) % (10 ** (i + 2)) %o A309643 ary << (b - a) / (10 ** (i + 1)) %o A309643 a = b %o A309643 } %o A309643 ary %o A309643 end %o A309643 p A309643(100) %Y A309643 Cf. A309600, A309605. %K A309643 nonn,base %O A309643 0,2 %A A309643 _Seiichi Manyama_, Aug 11 2019