This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309644 #14 Aug 12 2019 02:38:52 %S A309644 7,9,3,1,4,9,2,8,3,0,0,0,8,2,6,1,4,3,7,0,1,8,9,0,3,1,6,9,4,8,4,8,4,2, %T A309644 2,8,8,4,0,0,0,0,8,7,0,0,7,8,9,6,3,0,0,4,0,5,9,4,6,9,6,9,2,0,1,8,5,3, %U A309644 2,0,1,2,0,5,7,9,3,3,9,4,5,6,2,0,3,1,3,5,1,4,0,5,8,2,5,7,2,6,4,9 %N A309644 Digits of the 10-adic integer (-43/9)^(1/3). %H A309644 Seiichi Manyama, <a href="/A309644/b309644.txt">Table of n, a(n) for n = 0..10000</a> %F A309644 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 + 43) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309644 7^3 == 3 (mod 10). %e A309644 97^3 == 73 (mod 10^2). %e A309644 397^3 == 773 (mod 10^3). %e A309644 1397^3 == 7773 (mod 10^4). %e A309644 41397^3 == 77773 (mod 10^5). %e A309644 941397^3 == 777773 (mod 10^6). %o A309644 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((-43/9+O(2^N))^(1/3), 2^N), Mod((-43/9+O(5^N))^(1/3), 5^N)))), N) %o A309644 (Ruby) %o A309644 def A309644(n) %o A309644 ary = [7] %o A309644 a = 7 %o A309644 n.times{|i| %o A309644 b = (a + 3 * (9 * a ** 3 + 43)) % (10 ** (i + 2)) %o A309644 ary << (b - a) / (10 ** (i + 1)) %o A309644 a = b %o A309644 } %o A309644 ary %o A309644 end %o A309644 p A309644(100) %Y A309644 Cf. A309600, A309604. %K A309644 nonn,base %O A309644 0,1 %A A309644 _Seiichi Manyama_, Aug 11 2019