This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309645 #23 Aug 12 2019 10:16:39 %S A309645 9,5,8,6,6,5,0,7,6,0,5,1,0,8,9,4,8,5,8,5,6,2,2,5,2,1,8,7,6,9,9,8,2,3, %T A309645 8,1,0,5,8,5,7,0,0,9,6,7,4,2,0,6,6,7,7,1,2,4,1,7,9,1,2,5,4,8,7,7,3,4, %U A309645 4,9,1,7,6,9,6,7,0,7,4,1,3,3,6,9,7,4,6,9,8,8,5,9,0,0,1,5,4,0,5,4 %N A309645 Digits of the 10-adic integer (11/9)^(1/3). %H A309645 Seiichi Manyama, <a href="/A309645/b309645.txt">Table of n, a(n) for n = 0..10000</a> %F A309645 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 9, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 - 11) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309645 9^3 == 9 (mod 10). %e A309645 59^3 == 79 (mod 10^2). %e A309645 859^3 == 779 (mod 10^3). %e A309645 6859^3 == 7779 (mod 10^4). %e A309645 66859^3 == 77779 (mod 10^5). %e A309645 566859^3 == 777779 (mod 10^6). %o A309645 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((11/9+O(2^N))^(1/3), 2^N), Mod((11/9+O(5^N))^(1/3), 5^N)))), N) %o A309645 (Ruby) %o A309645 def A309645(n) %o A309645 ary = [9] %o A309645 a = 9 %o A309645 n.times{|i| %o A309645 b = (a + 7 * (9 * a ** 3 - 11)) % (10 ** (i + 2)) %o A309645 ary << (b - a) / (10 ** (i + 1)) %o A309645 a = b %o A309645 } %o A309645 ary %o A309645 end %o A309645 p A309645(100) %Y A309645 Cf. A309600, A309603. %K A309645 nonn,base %O A309645 0,1 %A A309645 _Seiichi Manyama_, Aug 11 2019