This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309646 #14 Aug 11 2019 12:00:16 %S A309646 1,6,3,1,6,7,2,5,4,5,8,8,0,7,7,0,9,9,6,5,4,1,8,9,2,8,3,5,3,4,6,9,6,8, %T A309646 4,3,0,2,6,7,5,7,5,7,9,3,7,7,9,7,6,3,2,1,5,3,4,8,4,2,4,9,0,5,5,9,0,4, %U A309646 4,8,0,9,7,5,2,2,3,3,5,9,8,9,3,7,0,3,1,6,0,2,0,3,9,7,6,5,3,1,3,1 %N A309646 Digits of the 10-adic integer (-71/9)^(1/3). %H A309646 Seiichi Manyama, <a href="/A309646/b309646.txt">Table of n, a(n) for n = 0..10000</a> %F A309646 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 1, b(n) = b(n-1) + 7 * (9 * b(n-1)^3 + 71) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309646 1^3 == 1 (mod 10). %e A309646 61^3 == 81 (mod 10^2). %e A309646 361^3 == 881 (mod 10^3). %e A309646 1361^3 == 8881 (mod 10^4). %e A309646 61361^3 == 88881 (mod 10^5). %e A309646 761361^3 == 888881 (mod 10^6). %o A309646 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((-71/9+O(2^N))^(1/3), 2^N), Mod((-71/9+O(5^N))^(1/3), 5^N)))), N) %o A309646 (Ruby) %o A309646 def A309646(n) %o A309646 ary = [1] %o A309646 a = 1 %o A309646 n.times{|i| %o A309646 b = (a + 7 * (9 * a ** 3 + 71)) % (10 ** (i + 2)) %o A309646 ary << (b - a) / (10 ** (i + 1)) %o A309646 a = b %o A309646 } %o A309646 ary %o A309646 end %o A309646 p A309646(100) %Y A309646 Cf. A309600, A309602. %K A309646 nonn,base %O A309646 0,2 %A A309646 _Seiichi Manyama_, Aug 11 2019