This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309647 #14 Aug 11 2019 11:59:56 %S A309647 7,2,6,1,3,2,9,4,6,9,1,4,6,5,1,8,6,9,0,9,6,7,0,7,6,3,6,7,5,6,4,8,4,7, %T A309647 0,1,9,2,3,9,6,0,0,5,7,4,6,9,6,7,9,6,7,1,7,1,2,1,6,8,9,9,5,3,5,8,1,0, %U A309647 5,1,4,6,4,6,2,6,8,3,2,0,8,8,1,4,9,7,4,2,3,6,1,0,5,7,2,6,9,6,3,3 %N A309647 Digits of the 10-adic integer (-53/9)^(1/3). %H A309647 Seiichi Manyama, <a href="/A309647/b309647.txt">Table of n, a(n) for n = 0..10000</a> %F A309647 Define the sequence {b(n)} by the recurrence b(0) = 0 and b(1) = 7, b(n) = b(n-1) + 3 * (9 * b(n-1)^3 + 53) mod 10^n for n > 1, then a(n) = (b(n+1) - b(n))/10^n. %e A309647 7^3 == 3 (mod 10). %e A309647 27^3 == 83 (mod 10^2). %e A309647 627^3 == 883 (mod 10^3). %e A309647 1627^3 == 8883 (mod 10^4). %e A309647 31627^3 == 88883 (mod 10^5). %e A309647 231627^3 == 888883 (mod 10^6). %o A309647 (PARI) N=100; Vecrev(digits(lift(chinese(Mod((-53/9+O(2^N))^(1/3), 2^N), Mod((-53/9+O(5^N))^(1/3), 5^N)))), N) %o A309647 (Ruby) %o A309647 def A309647(n) %o A309647 ary = [7] %o A309647 a = 7 %o A309647 n.times{|i| %o A309647 b = (a + 3 * (9 * a ** 3 + 53)) % (10 ** (i + 2)) %o A309647 ary << (b - a) / (10 ** (i + 1)) %o A309647 a = b %o A309647 } %o A309647 ary %o A309647 end %o A309647 p A309647(100) %Y A309647 Cf. A309600, A309601. %K A309647 nonn,base %O A309647 0,1 %A A309647 _Seiichi Manyama_, Aug 11 2019