This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309655 #28 Jun 10 2025 11:45:47 %S A309655 0,2,0,3,6,15,5,16,25,3,20,39,13,36,61,17,50,6,39,76,14,53,102,28,75, %T A309655 132,46,101,158,46,99,174,64,145,27,114,193,51,144,239,93,194,24,135, %U A309655 244,74,179,294,116,253,43,162,291,61,196,337,101,250,395,139,282,427,149,324 %N A309655 The smallest possible nonnegative difference between the sum of the first n primes (A007504) and the sum of any number of the directly following and consecutive primes. %C A309655 Conjecture: a(0)=0, a(2)=0 and a(532)=0 are the only zeros in the sequence. a(n) has been computed for primes < 10^10. - _Bob Andriesse_, Oct 07 2020 %H A309655 David Radcliffe, <a href="/A309655/b309655.txt">Table of n, a(n) for n = 0..10000</a> %e A309655 a(2) = 2 + 3 - 5 = 0; %e A309655 a(3) = 2 + 3 + 5 - 7 = 3; %e A309655 a(6) = 2 + 3 + 5 + 7 + 11 + 13 - (17 + 19) = 5. %e A309655 a(532)=0 because A007504(733) = 2*A007504(532). %o A309655 (Python) %o A309655 #Lists a(1)...a(100) %o A309655 from sympy import prime %o A309655 sumP=0 %o A309655 for i in range(1,101): %o A309655 sumP+=prime(i) %o A309655 j=i+1 %o A309655 diff=sumP %o A309655 while diff-prime(j) >=0: %o A309655 diff-=prime(j) %o A309655 j+=1 %o A309655 print(diff, end=', ') %o A309655 (Python) %o A309655 from itertools import islice %o A309655 from gmpy2 import next_prime %o A309655 def a309655_gen(): %o A309655 lower_prime = upper_prime = difference = 0 %o A309655 while True: %o A309655 while difference >= 0: %o A309655 upper_prime = next_prime(upper_prime) %o A309655 if difference < upper_prime: %o A309655 yield int(difference) %o A309655 difference -= upper_prime %o A309655 lower_prime = next_prime(lower_prime) %o A309655 difference += 2 * lower_prime %o A309655 print(list(islice(a309655_gen(), 64))) # _David Radcliffe_, Jun 10 2025 %Y A309655 Cf. A007504, A309714. %K A309655 nonn,look %O A309655 0,2 %A A309655 _Bob Andriesse_, Aug 11 2019