A309668 a(n) is the least positive number of the form floor(2^k/n) for some k >= 0 not yet in the sequence.
1, 2, 5, 4, 3, 10, 9, 8, 7, 6, 11, 21, 19, 18, 17, 16, 15, 14, 13, 12, 24, 23, 22, 42, 20, 39, 37, 36, 35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 52, 25, 49, 48, 47, 46, 45, 44, 43, 85, 41, 40, 80, 78, 38, 75, 74, 73, 71, 70, 69, 68, 67, 66, 65, 64, 63, 62, 61
Offset: 1
Examples
The first terms, alongside the binary representations of a(n) and of 1/n (with that of a(n) in parentheses), are: -- ---- --------- --------------------- 1 1 1 (1).00000000000000... 2 2 10 0.(10)000000000000... 3 5 101 0.0(101)0101010101... 4 4 100 0.0(100)0000000000... 5 3 11 0.00(11)0011001100... 6 10 1010 0.00(1010)10101010... 7 9 1001 0.00(1001)00100100... 8 8 1000 0.00(1000)00000000... 9 7 111 0.000(111)00011100... 10 6 110 0.000(110)01100110... 11 11 1011 0.000(1011)1010001... 12 21 10101 0.000(10101)010101... 13 19 10011 0.000(10011)101100... 14 18 10010 0.000(10010)010010... 15 17 10001 0.000(10001)000100...
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Rémy Sigrist, Colored representation of the first 2^16 terms (where the color is function of the parity of A070939(n) - A070939(a(n)))
- Index entries for sequences that are permutations of the natural numbers
Programs
-
PARI
s=1; for (n=1, 67, q=1/n; while (bittest(s, f=floor(q)), q*=2); print1 (f ", "); s+=2^f)
Comments