cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309683 Number of odd parts appearing among the smallest parts of the partitions of n into 3 parts.

This page as a plain text file.
%I A309683 #19 Sep 02 2019 07:37:42
%S A309683 0,0,0,1,1,2,2,3,3,5,5,7,7,9,9,12,12,15,15,18,18,22,22,26,26,30,30,35,
%T A309683 35,40,40,45,45,51,51,57,57,63,63,70,70,77,77,84,84,92,92,100,100,108,
%U A309683 108,117,117,126,126,135,135,145,145,155,155,165,165,176
%N A309683 Number of odd parts appearing among the smallest parts of the partitions of n into 3 parts.
%H A309683 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309683 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,0,0,1,-1,-1,1).
%F A309683 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (j mod 2).
%F A309683 From _Colin Barker_, Aug 22 2019: (Start)
%F A309683 G.f.: x^3 / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).
%F A309683 a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) for n>8.
%F A309683 (End)
%e A309683 Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
%e A309683                                                           1+1+8
%e A309683                                                    1+1+7  1+2+7
%e A309683                                                    1+2+6  1+3+6
%e A309683                                             1+1+6  1+3+5  1+4+5
%e A309683                                      1+1+5  1+2+5  1+4+4  2+2+6
%e A309683                               1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
%e A309683                        1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
%e A309683          1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
%e A309683 -----------------------------------------------------------------------
%e A309683   n  |     3      4      5      6      7      8      9     10      ...
%e A309683 -----------------------------------------------------------------------
%e A309683 a(n) |     1      1      2      2      3      3      5      5      ...
%e A309683 -----------------------------------------------------------------------
%t A309683 Table[Sum[Sum[Mod[j, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
%t A309683 LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 0, 1, 1, 2, 2, 3, 3}, 50] (* _Wesley Ivan Hurt_, Aug 28 2019 *)
%Y A309683 Cf. A026923, A026927, A309684, A309685, A309686, A309687, A309688, A309689, A309690, A309692, A309694.
%K A309683 nonn,easy
%O A309683 0,6
%A A309683 _Wesley Ivan Hurt_, Aug 12 2019