cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309684 Sum of the odd parts appearing among the smallest parts of the partitions of n into 3 parts.

This page as a plain text file.
%I A309684 #35 Nov 02 2021 06:32:33
%S A309684 0,0,0,1,1,2,2,3,3,7,7,11,11,15,15,24,24,33,33,42,42,58,58,74,74,90,
%T A309684 90,115,115,140,140,165,165,201,201,237,237,273,273,322,322,371,371,
%U A309684 420,420,484,484,548,548,612,612,693,693,774,774,855,855,955,955
%N A309684 Sum of the odd parts appearing among the smallest parts of the partitions of n into 3 parts.
%H A309684 Jinyuan Wang, <a href="/A309684/b309684.txt">Table of n, a(n) for n = 0..5000</a>
%H A309684 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309684 <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,0,0,2,-2,-2,2,0,0,-1,1,1,-1).
%F A309684 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} j * (j mod 2).
%F A309684 From _Colin Barker_, Aug 22 2019: (Start)
%F A309684 G.f.: x^3*(1 + x^2)*(1 - x^2 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x + x^2)^2).
%F A309684 a(n) = a(n-1) + a(n-2) - a(n-3) + 2*a(n-6) - 2*a(n-7) - 2*a(n-8) + 2*a(n-9) - a(n-12) + a(n-13) + a(n-14) - a(n-15) for n > 14.
%F A309684 (End)
%F A309684 a(n) = (-4*s^3+(2*t-7)*s^2+(4*t-1)*s+2*t+2)/2, where s = floor((n-3)/6) and t = floor((n-3)/2). - _Wesley Ivan Hurt_, Oct 27 2021
%e A309684 Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
%e A309684                                                           1+1+8
%e A309684                                                    1+1+7  1+2+7
%e A309684                                                    1+2+6  1+3+6
%e A309684                                             1+1+6  1+3+5  1+4+5
%e A309684                                      1+1+5  1+2+5  1+4+4  2+2+6
%e A309684                               1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
%e A309684                        1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
%e A309684          1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
%e A309684 -----------------------------------------------------------------------
%e A309684   n  |     3      4      5      6      7      8      9     10      ...
%e A309684 -----------------------------------------------------------------------
%e A309684 a(n) |     1      1      2      2      3      3      7      7      ...
%e A309684 -----------------------------------------------------------------------
%t A309684 Table[Sum[Sum[j*Mod[j, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
%t A309684 LinearRecurrence[{1, 1, -1, 0, 0, 2, -2, -2, 2, 0, 0, -1, 1, 1, -1}, {0, 0, 0, 1, 1, 2, 2, 3, 3, 7, 7, 11, 11, 15, 15}, 20] (* _Wesley Ivan Hurt_, Aug 29 2019 *)
%o A309684 (PARI) a(n) = sum(j = 1, floor(n/3), sum(i = j, floor((n-j)/2), j * (j%2))); \\ _Jinyuan Wang_, Aug 29 2019
%Y A309684 Cf. A026923, A026927, A309683, A309685, A309686, A309687, A309688, A309689, A309690, A309692, A309694.
%K A309684 nonn,easy
%O A309684 0,6
%A A309684 _Wesley Ivan Hurt_, Aug 12 2019