cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309685 Number of even parts appearing among the smallest parts of the partitions of n into 3 parts.

This page as a plain text file.
%I A309685 #18 Sep 01 2019 09:22:45
%S A309685 0,0,0,0,0,0,1,1,2,2,3,3,5,5,7,7,9,9,12,12,15,15,18,18,22,22,26,26,30,
%T A309685 30,35,35,40,40,45,45,51,51,57,57,63,63,70,70,77,77,84,84,92,92,100,
%U A309685 100,108,108,117,117,126,126,135,135,145,145,155,155,165
%N A309685 Number of even parts appearing among the smallest parts of the partitions of n into 3 parts.
%H A309685 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309685 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, -1, 0, 0, 1, -1, -1, 1).
%F A309685 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} ((j-1) mod 2).
%F A309685 From _Colin Barker_, Aug 23 2019: (Start)
%F A309685 G.f.: x^6 / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)).
%F A309685 a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) for n>8.
%F A309685 (End)
%F A309685 a(n) = A001840(floor((n-4)/2)) for n>=2. - _Joerg Arndt_, Aug 23 2019
%e A309685 Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
%e A309685                                                           1+1+8
%e A309685                                                    1+1+7  1+2+7
%e A309685                                                    1+2+6  1+3+6
%e A309685                                             1+1+6  1+3+5  1+4+5
%e A309685                                      1+1+5  1+2+5  1+4+4  2+2+6
%e A309685                               1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
%e A309685                        1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
%e A309685          1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
%e A309685 -----------------------------------------------------------------------
%e A309685   n  |     3      4      5      6      7      8      9     10      ...
%e A309685 -----------------------------------------------------------------------
%e A309685 a(n) |     0      0      0      1      1      2      2      3      ...
%e A309685 -----------------------------------------------------------------------
%t A309685 LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 0, 0, 0, 0, 1, 1, 2}, 80] (* _Wesley Ivan Hurt_, Aug 30 2019 *)
%Y A309685 Cf. A001840, A026923, A026927, A309683, A309684, A309686, A309687, A309688, A309689, A309690, A309692, A309694.
%K A309685 nonn,easy
%O A309685 0,9
%A A309685 _Wesley Ivan Hurt_, Aug 12 2019