This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A309685 #18 Sep 01 2019 09:22:45 %S A309685 0,0,0,0,0,0,1,1,2,2,3,3,5,5,7,7,9,9,12,12,15,15,18,18,22,22,26,26,30, %T A309685 30,35,35,40,40,45,45,51,51,57,57,63,63,70,70,77,77,84,84,92,92,100, %U A309685 100,108,108,117,117,126,126,135,135,145,145,155,155,165 %N A309685 Number of even parts appearing among the smallest parts of the partitions of n into 3 parts. %H A309685 <a href="/index/Par#part">Index entries for sequences related to partitions</a> %H A309685 <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (1, 1, -1, 0, 0, 1, -1, -1, 1). %F A309685 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} ((j-1) mod 2). %F A309685 From _Colin Barker_, Aug 23 2019: (Start) %F A309685 G.f.: x^6 / ((1 - x)^3*(1 + x)^2*(1 - x + x^2)*(1 + x + x^2)). %F A309685 a(n) = a(n-1) + a(n-2) - a(n-3) + a(n-6) - a(n-7) - a(n-8) + a(n-9) for n>8. %F A309685 (End) %F A309685 a(n) = A001840(floor((n-4)/2)) for n>=2. - _Joerg Arndt_, Aug 23 2019 %e A309685 Figure 1: The partitions of n into 3 parts for n = 3, 4, ... %e A309685 1+1+8 %e A309685 1+1+7 1+2+7 %e A309685 1+2+6 1+3+6 %e A309685 1+1+6 1+3+5 1+4+5 %e A309685 1+1+5 1+2+5 1+4+4 2+2+6 %e A309685 1+1+4 1+2+4 1+3+4 2+2+5 2+3+5 %e A309685 1+1+3 1+2+3 1+3+3 2+2+4 2+3+4 2+4+4 %e A309685 1+1+1 1+1+2 1+2+2 2+2+2 2+2+3 2+3+3 3+3+3 3+3+4 ... %e A309685 ----------------------------------------------------------------------- %e A309685 n | 3 4 5 6 7 8 9 10 ... %e A309685 ----------------------------------------------------------------------- %e A309685 a(n) | 0 0 0 1 1 2 2 3 ... %e A309685 ----------------------------------------------------------------------- %t A309685 LinearRecurrence[{1, 1, -1, 0, 0, 1, -1, -1, 1}, {0, 0, 0, 0, 0, 0, 1, 1, 2}, 80] (* _Wesley Ivan Hurt_, Aug 30 2019 *) %Y A309685 Cf. A001840, A026923, A026927, A309683, A309684, A309686, A309687, A309688, A309689, A309690, A309692, A309694. %K A309685 nonn,easy %O A309685 0,9 %A A309685 _Wesley Ivan Hurt_, Aug 12 2019