cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309686 Sum of the even parts appearing among the smallest parts of the partitions of n into 3 parts.

This page as a plain text file.
%I A309686 #20 Sep 01 2019 09:23:00
%S A309686 0,0,0,0,0,0,2,2,4,4,6,6,12,12,18,18,24,24,36,36,48,48,60,60,80,80,
%T A309686 100,100,120,120,150,150,180,180,210,210,252,252,294,294,336,336,392,
%U A309686 392,448,448,504,504,576,576,648,648,720,720,810,810,900,900,990
%N A309686 Sum of the even parts appearing among the smallest parts of the partitions of n into 3 parts.
%H A309686 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309686 <a href="/index/Rec#order_15">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1,0,0,2,-2,-2,2,0,0,-1,1,1,-1).
%F A309686 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} j * ((j-1) mod 2).
%F A309686 From _Colin Barker_, Aug 23 2019: (Start)
%F A309686 G.f.: 2*x^6 / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x + x^2)^2).
%F A309686 a(n) = a(n-1) + a(n-2) - a(n-3) + 2*a(n-6) - 2*a(n-7) - 2*a(n-8) + 2*a(n-9) - a(n-12) + a(n-13) + a(n-14) - a(n-15) for n>14.
%F A309686 (End)
%e A309686 Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
%e A309686                                                           1+1+8
%e A309686                                                    1+1+7  1+2+7
%e A309686                                                    1+2+6  1+3+6
%e A309686                                             1+1+6  1+3+5  1+4+5
%e A309686                                      1+1+5  1+2+5  1+4+4  2+2+6
%e A309686                               1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
%e A309686                        1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
%e A309686          1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
%e A309686 -----------------------------------------------------------------------
%e A309686   n  |     3      4      5      6      7      8      9     10      ...
%e A309686 -----------------------------------------------------------------------
%e A309686 a(n) |     0      0      0      2      2      4      4      6      ...
%e A309686 -----------------------------------------------------------------------
%t A309686 Table[Sum[Sum[j*Mod[j - 1, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
%t A309686 LinearRecurrence[{1, 1, -1, 0, 0, 2, -2, -2, 2, 0, 0, -1, 1, 1, -1}, {0, 0, 0, 0, 0, 0, 2, 2, 4, 4, 6, 6, 12, 12, 18}, 80]
%Y A309686 Cf. A026923, A026927, A309683, A309684, A309685, A309687, A309688, A309689, A309690, A309692, A309694.
%K A309686 nonn,easy
%O A309686 0,7
%A A309686 _Wesley Ivan Hurt_, Aug 12 2019