cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309687 Number of odd parts appearing among the second largest parts of the partitions of n into 3 parts.

This page as a plain text file.
%I A309687 #21 Sep 01 2019 09:23:11
%S A309687 0,0,0,1,1,1,1,2,3,4,4,5,6,7,8,10,11,12,13,15,17,19,20,22,24,26,28,31,
%T A309687 33,35,37,40,43,46,48,51,54,57,60,64,67,70,73,77,81,85,88,92,96,100,
%U A309687 104,109,113,117,121,126,131,136,140,145,150,155,160,166
%N A309687 Number of odd parts appearing among the second largest parts of the partitions of n into 3 parts.
%H A309687 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309687 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2,2,-1,0,1,-2,2,-2,1).
%F A309687 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (i mod 2).
%F A309687 From _Colin Barker_, Aug 23 2019: (Start)
%F A309687 G.f.: x^3*(1 - x + x^2 - x^3 + x^4) / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)).
%F A309687 a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) + a(n-6) - 2*a(n-7) + 2*a(n-8) - 2*a(n-9) + a(n-10) for n>9.
%F A309687 (End)
%e A309687 Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
%e A309687                                                           1+1+8
%e A309687                                                    1+1+7  1+2+7
%e A309687                                                    1+2+6  1+3+6
%e A309687                                             1+1+6  1+3+5  1+4+5
%e A309687                                      1+1+5  1+2+5  1+4+4  2+2+6
%e A309687                               1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
%e A309687                        1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
%e A309687          1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
%e A309687 -----------------------------------------------------------------------
%e A309687   n  |     3      4      5      6      7      8      9     10      ...
%e A309687 -----------------------------------------------------------------------
%e A309687 a(n) |     1      1      1      1      2      3      4      4      ...
%e A309687 -----------------------------------------------------------------------
%t A309687 Table[Sum[Sum[Mod[i, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
%t A309687 LinearRecurrence[{2, -2, 2, -1, 0, 1, -2, 2, -2, 1}, {0, 0, 0, 1, 1, 1, 1, 2, 3, 4}, 80]
%o A309687 (PARI) a(n) = sum(j=1, n\3, sum(i=j, (n-j)\2, i % 2)); \\ _Michel Marcus_, Aug 23 2019
%Y A309687 Cf. A026923, A026927, A309683, A309684, A309685, A309686, A309688, A309689, A309690, A309692, A309694.
%K A309687 nonn,easy
%O A309687 0,8
%A A309687 _Wesley Ivan Hurt_, Aug 12 2019