cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309688 Sum of the odd parts appearing among the second largest parts of the partitions of n into 3 parts.

This page as a plain text file.
%I A309688 #17 Sep 03 2019 23:03:16
%S A309688 0,0,0,1,1,1,1,4,7,10,10,15,20,25,30,42,49,56,63,79,95,111,120,140,
%T A309688 160,180,200,233,257,281,305,344,383,422,450,495,540,585,630,694,745,
%U A309688 796,847,919,991,1063,1120,1200,1280,1360,1440,1545,1633,1721,1809
%N A309688 Sum of the odd parts appearing among the second largest parts of the partitions of n into 3 parts.
%H A309688 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309688 <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (2,-3,4,-3,2,1,-4,6,-8,6,-4,1,2,-3,4,-3,2,-1).
%F A309688 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} i * (i mod 2).
%F A309688 From _Colin Barker_, Aug 23 2019: (Start)
%F A309688 G.f.: x^3*(1 + x + x^2 + x^3 + x^4)*(1 - 2*x + 3*x^2 - 4*x^3 + 6*x^4 - 4*x^5 + 3*x^6 - 2*x^7 + x^8) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2).
%F A309688 a(n) = 2*a(n-1) - 3*a(n-2) + 4*a(n-3) - 3*a(n-4) + 2*a(n-5) + a(n-6) - 4*a(n-7) + 6*a(n-8) - 8*a(n-9) + 6*a(n-10) - 4*a(n-11) + a(n-12) + 2*a(n-13) - 3*a(n-14) + 4*a(n-15) - 3*a(n-16) + 2*a(n-17) - a(n-18) for n>17.
%F A309688 (End)
%e A309688 Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
%e A309688                                                           1+1+8
%e A309688                                                    1+1+7  1+2+7
%e A309688                                                    1+2+6  1+3+6
%e A309688                                             1+1+6  1+3+5  1+4+5
%e A309688                                      1+1+5  1+2+5  1+4+4  2+2+6
%e A309688                               1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
%e A309688                        1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
%e A309688          1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
%e A309688 -----------------------------------------------------------------------
%e A309688   n  |     3      4      5      6      7      8      9     10      ...
%e A309688 -----------------------------------------------------------------------
%e A309688 a(n) |     1      1      1      1      4      7     10     10      ...
%e A309688 -----------------------------------------------------------------------
%t A309688 Table[Sum[Sum[i * Mod[i, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
%t A309688 LinearRecurrence[{2, -3, 4, -3, 2, 1, -4, 6, -8, 6, -4, 1, 2, -3, 4, -3, 2, -1}, {0, 0, 0, 1, 1, 1, 1, 4, 7, 10, 10, 15, 20, 25, 30, 42, 49, 56}, 80]
%Y A309688 Cf. A026923, A026927, A309683, A309684, A309685, A309686, A309687, A309689, A309690, A309692, A309694.
%K A309688 nonn,easy
%O A309688 0,8
%A A309688 _Wesley Ivan Hurt_, Aug 12 2019