cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309689 Number of even parts appearing among the second largest parts of the partitions of n into 3 parts.

This page as a plain text file.
%I A309689 #24 Nov 02 2021 07:05:03
%S A309689 0,0,0,0,0,1,2,2,2,3,4,5,6,7,8,9,10,12,14,15,16,18,20,22,24,26,28,30,
%T A309689 32,35,38,40,42,45,48,51,54,57,60,63,66,70,74,77,80,84,88,92,96,100,
%U A309689 104,108,112,117,122,126,130,135,140,145,150,155,160,165,170
%N A309689 Number of even parts appearing among the second largest parts of the partitions of n into 3 parts.
%H A309689 Colin Barker, <a href="/A309689/b309689.txt">Table of n, a(n) for n = 0..1000</a>
%H A309689 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309689 <a href="/index/Rec#order_10">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2,2,-1,0,1,-2,2,-2,1).
%F A309689 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} ((i-1) mod 2).
%F A309689 From _Colin Barker_, Aug 23 2019: (Start)
%F A309689 G.f.: x^5 / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)).
%F A309689 a(n) = 2*a(n-1) - 2*a(n-2) + 2*a(n-3) - a(n-4) + a(n-6) - 2*a(n-7) + 2*a(n-8) - 2*a(n-9) + a(n-10) for n>9.
%F A309689 (End)
%F A309689 a(n) = (6*n^2+48*cos(n*Pi/3)-36*cos(n*Pi/2)+16*cos(2*n*Pi/3)-3*(-1)^n-25)/144. - _Ilya Gutkovskiy_, Oct 29 2021
%e A309689 Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
%e A309689                                                           1+1+8
%e A309689                                                    1+1+7  1+2+7
%e A309689                                                    1+2+6  1+3+6
%e A309689                                             1+1+6  1+3+5  1+4+5
%e A309689                                      1+1+5  1+2+5  1+4+4  2+2+6
%e A309689                               1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
%e A309689                        1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
%e A309689          1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
%e A309689 -----------------------------------------------------------------------
%e A309689   n  |     3      4      5      6      7      8      9     10      ...
%e A309689 -----------------------------------------------------------------------
%e A309689 a(n) |     0      0      1      2      2      2      3      4      ...
%e A309689 -----------------------------------------------------------------------
%t A309689 Table[Sum[Sum[Mod[i - 1, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
%t A309689 LinearRecurrence[{2, -2, 2, -1, 0, 1, -2, 2, -2, 1}, {0, 0, 0, 0, 0, 1, 2, 2, 2, 3}, 80]
%o A309689 (PARI) concat([0,0,0,0,0], Vec(x^5 / ((1 - x)^3*(1 + x)*(1 - x + x^2)*(1 + x^2)*(1 + x + x^2)) + O(x^40))) \\ _Colin Barker_, Aug 23 2019
%Y A309689 Cf. A026923, A026927, A309683, A309684, A309685, A309686, A309687, A309688, A309690, A309692, A309694.
%K A309689 nonn,easy
%O A309689 0,7
%A A309689 _Wesley Ivan Hurt_, Aug 12 2019