cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309690 Sum of the even parts appearing among the second largest parts of the partitions of n into 3 parts.

This page as a plain text file.
%I A309690 #14 Sep 03 2019 23:23:58
%S A309690 0,0,0,0,0,2,4,4,4,8,12,16,20,26,32,38,44,58,72,80,88,106,124,142,160,
%T A309690 182,204,226,248,284,320,346,372,414,456,498,540,588,636,684,732,800,
%U A309690 868,922,976,1052,1128,1204,1280,1364,1448,1532,1616,1726,1836,1928
%N A309690 Sum of the even parts appearing among the second largest parts of the partitions of n into 3 parts.
%H A309690 Colin Barker, <a href="/A309690/b309690.txt">Table of n, a(n) for n = 0..1000</a>
%H A309690 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309690 <a href="/index/Rec#order_18">Index entries for linear recurrences with constant coefficients</a>, signature (2,-3,4,-3,2,1,-4,6,-8,6,-4,1,2,-3,4,-3,2,-1).
%F A309690 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} i * ((i-1) mod 2).
%F A309690 From _Colin Barker_, Aug 23 2019: (Start)
%F A309690 G.f.: 2*x^5*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2).
%F A309690 a(n) = 2*a(n-1) - 3*a(n-2) + 4*a(n-3) - 3*a(n-4) + 2*a(n-5) + a(n-6) - 4*a(n-7) + 6*a(n-8) - 8*a(n-9) + 6*a(n-10) - 4*a(n-11) + a(n-12) + 2*a(n-13) - 3*a(n-14) + 4*a(n-15) - 3*a(n-16) + 2*a(n-17) - a(n-18) for n>17.
%F A309690 (End)
%e A309690 Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
%e A309690                                                           1+1+8
%e A309690                                                    1+1+7  1+2+7
%e A309690                                                    1+2+6  1+3+6
%e A309690                                             1+1+6  1+3+5  1+4+5
%e A309690                                      1+1+5  1+2+5  1+4+4  2+2+6
%e A309690                               1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
%e A309690                        1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
%e A309690          1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
%e A309690 -----------------------------------------------------------------------
%e A309690   n  |     3      4      5      6      7      8      9     10      ...
%e A309690 -----------------------------------------------------------------------
%e A309690 a(n) |     0      0      2      4      4      4      8     12      ...
%e A309690 -----------------------------------------------------------------------
%t A309690 Table[Sum[Sum[i * Mod[i - 1, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
%t A309690 LinearRecurrence[{2, -3, 4, -3, 2, 1, -4, 6, -8, 6, -4, 1, 2, -3, 4, -3, 2, -1}, {0, 0, 0, 0, 0, 2, 4, 4, 4, 8, 12, 16, 20, 26, 32, 38, 44, 58}, 80]
%o A309690 (PARI) concat([0,0,0,0,0], Vec(2*x^5*(1 - x + x^2 - x^3 + x^4)*(1 + x + x^2 + x^3 + x^4) / ((1 - x)^4*(1 + x)^2*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2) + O(x^60))) \\ _Colin Barker_, Aug 23 2019
%Y A309690 Cf. A026923, A026927, A309683, A309684, A309685, A309686, A309687, A309688, A309689, A309692, A309694.
%K A309690 nonn,easy
%O A309690 0,6
%A A309690 _Wesley Ivan Hurt_, Aug 12 2019