cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A309692 Sum of the odd parts appearing among the largest parts of the partitions of n into 3 parts.

This page as a plain text file.
%I A309692 #17 Oct 13 2023 17:25:49
%S A309692 0,0,0,1,0,3,3,11,8,20,17,38,33,60,55,95,83,131,124,189,173,248,232,
%T A309692 328,308,416,396,529,496,643,619,795,756,948,909,1134,1089,1332,1287,
%U A309692 1567,1503,1803,1752,2093,2021,2384,2312,2720,2640,3072,2992,3473,3368
%N A309692 Sum of the odd parts appearing among the largest parts of the partitions of n into 3 parts.
%H A309692 Colin Barker, <a href="/A309692/b309692.txt">Table of n, a(n) for n = 0..1000</a>
%H A309692 <a href="/index/Par#part">Index entries for sequences related to partitions</a>
%H A309692 <a href="/index/Rec#order_19">Index entries for linear recurrences with constant coefficients</a>, signature (1,-1,1,1,-1,3,-3,2,-2,-2,2,-3,3,-1,1,1,-1,1,-1).
%F A309692 a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (n-i-j) * ((n-i-j) mod 2).
%F A309692 From _Colin Barker_, Aug 23 2019: (Start)
%F A309692 G.f.: x^3*(1 - x + 4*x^2 - x^3 + 10*x^4 - 2*x^5 + 14*x^6 - 3*x^7 + 14*x^8 - 3*x^9 + 8*x^10 + 3*x^12) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2).
%F A309692 a(n) = a(n-1) - a(n-2) + a(n-3) + a(n-4) - a(n-5) + 3*a(n-6) - 3*a(n-7) + 2*a(n-8) - 2*a(n-9) - 2*a(n-10) + 2*a(n-11) - 3*a(n-12) + 3*a(n-13) - a(n-14) + a(n-15) + a(n-16) - a(n-17) + a(n-18) - a(n-19) for n>18.
%F A309692 (End)
%e A309692 Figure 1: The partitions of n into 3 parts for n = 3, 4, ...
%e A309692                                                           1+1+8
%e A309692                                                    1+1+7  1+2+7
%e A309692                                                    1+2+6  1+3+6
%e A309692                                             1+1+6  1+3+5  1+4+5
%e A309692                                      1+1+5  1+2+5  1+4+4  2+2+6
%e A309692                               1+1+4  1+2+4  1+3+4  2+2+5  2+3+5
%e A309692                        1+1+3  1+2+3  1+3+3  2+2+4  2+3+4  2+4+4
%e A309692          1+1+1  1+1+2  1+2+2  2+2+2  2+2+3  2+3+3  3+3+3  3+3+4    ...
%e A309692 -----------------------------------------------------------------------
%e A309692   n  |     3      4      5      6      7      8      9     10      ...
%e A309692 -----------------------------------------------------------------------
%e A309692 a(n) |     1      0      3      3     11      8     20     17      ...
%e A309692 -----------------------------------------------------------------------
%t A309692 Table[Sum[Sum[ (n - i - j) * Mod[n - i - j, 2], {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}], {n, 0, 80}]
%t A309692 LinearRecurrence[{1, -1, 1, 1, -1, 3, -3, 2, -2, -2, 2, -3, 3, -1, 1, 1, -1, 1, -1}, {0, 0, 0, 1, 0, 3, 3, 11, 8, 20, 17, 38, 33, 60, 55, 95, 83, 131, 124}, 80]
%t A309692 Table[Total[Select[IntegerPartitions[n,{3}][[;;,1]],OddQ]],{n,0,60}] (* _Harvey P. Dale_, Oct 13 2023 *)
%o A309692 (PARI) concat([0,0,0], Vec(x^3*(1 - x + 4*x^2 - x^3 + 10*x^4 - 2*x^5 + 14*x^6 - 3*x^7 + 14*x^8 - 3*x^9 + 8*x^10 + 3*x^12) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)^2*(1 + x^2)^2*(1 + x + x^2)^2) + O(x^40))) \\ _Colin Barker_, Aug 23 2019
%Y A309692 Cf. A026923, A026927, A309683, A309684, A309685, A309686, A309687, A309688, A309689, A309690, A309694.
%K A309692 nonn,easy
%O A309692 0,6
%A A309692 _Wesley Ivan Hurt_, Aug 12 2019